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ABSTRACT 

A new approximate method is developed  for  calculat- 
ing the temperature  distribution  in an atmosphere  where 
local  mechanical-energy  dissipation is balanced by local 
net  radiative loss in  one  or  more  spectral  lines  for which 
the  atmosphere is optically  thick.  The  method  uncouples 
the equations of radiative  transfer  for  the  individual  spec- 
tral lines  from  the  energy-conservation  equation  and  from 
each  other.  This  permits a solution of each  individual 
transfer equation for  the  radiation  field  in  each  line. 
These  results,  used  in  the  energy-conservation  equation, 
yield  the  temperature  distribution if  the  optical  depth 
ratio of the  spectral  lines at each  point is known. The 
method is applied  to  selected  strong  resonance  lines in 
the  solar  chromosphere. 
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THE  TEMPERATURE DISTRIBUTION IN THE  SOLAR  CHROMOSPHERE 

by 
Stuart D. Jordan* 

Goddard Space Flight  Center 

1lNTRODUCTlON 

A  fundamental  problem  in  solar  physics is to  understand  the  origin of the high temperatures 
in  the  outermost  region of the solar  atmosphere.  Assuming only radiative  transfer of energy  in 
this region, we  should  expect no temperature  minimum  above which temperature  increases with 
height. In fact,  however,  Edlen  (1943) has shown that the outermost  region, the corona, has a 
temperature on the  order of 106"K, which is at least two orders  of magnitude  above  the  minimum 
temperature. 

In seeking  sources of energy  to  explain  the  temperature rise, we can  look  outside  the  solar at- 
mosphere as well as beneath it. We shall see that  no  satisfactory  sources have  been found outside 
the sun.  Thomas  (1948a)  suggested that spicules  might  heat  the  corona if they  were  supersonic 
jets,  but current  estimates of ambient  gas  temperatures  for  most of the  region  through which spic- 
ules  move  require  that  spicules be  subsonic. 

The  only  mechanical  source  that has proved  promising  to  date is granulation,as first suggested 
by Biermann (1946,  1948) and,  independently, by Schwarzschild (1948). They  suggested  that  the 

build  up into  shock  waves as they  propagate  out  into  the  chromosphere  and  corona.  This  trans- 
formation of acoustic  waves  into  shock  waves  was  deemed  reasonable  because there is a rapid 
decrease of mass  density with height in  the  chromosphere-corona  region,  where  they  proposed the 
shock  dissipation  should  take  place. Rough estimates of the  energy  available  for  shock  dissipa- 
tion do agree in order of magnitude with rough  estimates of the radiative  energy  loss  from  the 
chromosphere-corona,  although (as we shall see) estimates of the  available  mechanical  energy 
and of the  radiation  losses could  both  be in   e r ror  by as much as an  order of magnitude. 

. granules  are a manifestation of turbulent  convection; this could generate  acoustic  waves  that would 

Much  work  has  since  been  done on the  problem of what  wave modes are generated by the con- 
vection  zone, how they  propagate,  and by what mechanism  their  energy is dissipated  into the 
atmosphere. We shall  review this work  in  Chapter I1 and, after considering  various wave modes 
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Having decided upon the  most  likely  dissipation  mechanism,  we  then  consider by what means 
the  dissipated  energy is redistributed  through  the  atmosphere  and  eventually  lost  from  the  atmos- 
phere  in  radiation.  For  most of the  chromospheric  region  studied  in this report, conduction proves 
to  be  negligible.  Thus, we shall treat  only  shock-wave  heating  and  radiative  redistribution  and 
cooling. By ignoring  the  transient  phenomena  associated  with  the  passage of a shock  wave  through 
a region  and  the  subsequent  radiative  relaxation,  and  instead  working  with  time-averaged  quantities 
for  an  atmosphere  in a statistically  steady state, we can use  the following  local  energy-balance 
condition: 

E i n  = Eout  ' 

where (in line with  convention) Ein is the  dissipated  mechanical  energy, and Eout is the net radia- 
tive loss. The  problem is to  derive  functional  forms  for Ei n and Eout . If this can  be  done,  the 
temperature  distribution  in  the  atmosphere  can  then be  calculated  from  Equation 1. The  main ob- 
ject of this entire  study is to  exhibit a new approximate method for  determining  the  functional  form 
of Eout in a mechanically  heated (i.e., nonradiative  equilibrium)  atmosphere, so  that  the  tempera- 
ture  distribution  in  the  atmosphere  can  be  calculated. 

The term E i n  can  be  obtained  from  shock-wave  theory  for  the  calculations  reported  here.  The 
term Eout is a function of the  radiation  fields  and  associated  source  functions  for  various  spectral 
lines  and  continua.  In  general,  these  quantities  can  be  derived  only  from  equations of transfer  for 
the  various  lines  and continua. 

What we need is an  approximate method  to  uncouple  the  equations of radiative  transfer  from 
Equation 1 and  from  each  other, so that we can  solve  the  separate  transfer  equations independently 
and use  the  results  in  the  equation, which  can  then  be  solved  at  various  heights  in  the  atmosphere 
to  give the temperature  distribution. Such an approximate,  iterative method is given in  Chapter III. 
The  so-called  non-LTE or  general  approach  to  radiative-transfer  problems  provides  the  basis  for 
everything we shall do.  Two relevant  references which will  be  used  throughout are PJtysics of the 
Solar Clzronzospheve by Thomas and  Athay  (1961) and Some  Aspects of Non-Eqzdibviunz Tlzermo- 
dynamics in the  Pvesence of a  Radiation  Field by Thomas (1965). Hereafter, we shall refer  to  the 
above by PSC  and NETPRF,  respectively.  All of the non-LTE  work  used  in  the  report will be de- 
rived  in  detail, following the notation of NETPRF. 
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Chapter II 
THE SOLAR ATMOSPHERE 

A. The  Classical  Problem of a Stellar Atmosphere 

To construct a model  for  any stellar atmosphere,  including  the  sun, we must  make  some 
physical  assumptions  in  order  to  obtain a number of equations  equal  to  the  number of unknown 
quantities.  More  precisely, we must first specify what quantities we need  to  describe  the at- 
mospheric  gaseous  ensemble,  and  then  introduce  the  number of physical  assumptions  that  will 
let  us  derive  these  quantities  from  observational  data. We call  that set of parameters  required 
to  describe  the  physical  state of the  gas a "complete set." By physical state of the  gas, we mean 
the populations of all internal  atomic or molecular  energy  levels  and all kinetic  degrees of free- 
dom for all individual  particles, as well as the photon distribution,  in  terms of energy  and  direct- 
tion. These  physical-state  parameters  must be known at every point in  the  gas.  Our  problem is 
to  derive  this  complete set of parameters  from  the  observational data, whichwe  call  the  "observa- 
tional  set."  Since the observational set will not, in general, be sufficient  to  give the complete set, 
we must  introduce  physical  assumptions  to  supplement  our  observations. We discuss  several 
physical  assumptions which astronomers often use,  and  evaluate  these  assumptions  for  the  solar 

8 atmosphere. 

Assumptions  commonly  used  in  constructing  atmospheric  models are  local  thermodynamic 
equilibrium,  radiative  equilibrium,  and  hydrostatic  equilibrium.  Hereafter we shall refer  to  them 
as LTE, RE, and HE, respectively. We define  them  and  discuss  their  applicability. 

LTE, as we shall use it here, means  that in each  small  volume  element of gas all the well 
known thermodynamic-equilibrium  distribution  functions a r e  valid at some  local  temperature. In 
particular,  the  Maxwell,  Boltzmann,  and  Saha  equations  describe  the  energy state of the  matter 
gas;  the  Planck function describes the energy  state of the photon  gas.  Local  temperature is the 
only parameter  required  to  describe the energy  state of a small  gas  element; a complete set of 
parameters  to  describe  the  physical  state would be temperature,density,  and  chemical composition. 

LTE  differs  from  thermodynamic  equilibrium  TE  in  that  temperature  gradients are permitted 
in  LTE, as long as the  energy  fluxes  resulting  from the gradients are too small  to  disturb  the 
local  energy  distributions given by the  TE  distribution  functions  evaluated at the local  tempera- 
ture. Obviously, a star cannot  be a strict  thermodynamic  equilibrium  enclosure,  since a TE en- 
closure is defined as a system  isolated  from its surroundings by an adiabatic  wall  through which 
no fluxes are  permitted,  and a star must  lose  energy  to  surrounding  space  or  we could  not see it. 
Thus,  the  LTE  assumption has been  proposed as the simplest  assumption we  could use  (subject  to 
verification)  to  describe  conditions  in  part of the atmosphere. 
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There is one region of any  atmosphere  where  LTE  cannot  be  valid, i. e., the  outer  region, 
which itself produces  negligible  radiation  but  through  which  passes all the  radiation  that  escapes 
the star. In  LTE as defined, the  radiation  field  must  be  isotropic-a  condition  obviously  violated 
in  the  above  example.  To  provide a less restrictive  assumption (which we  shall see is usually 
still to  restrictive)  for handling these  regions  where  the  radiation  field is anisotropic,  some as- 
tronomers have  introduced  the  assumption  LTE-R.  This  means  that  the  TE  distribution  functions 
for  the  matter are assumed  to apply at some  local  temperature, but  that  the  radiation  field is not 
assumed  to  be  either  isotropic  or  equal  to a Planck  function at that  temperature. We must  obtain 
the  radiation  field by solving  the  equation of radiative  transfer  for  intensity I,, where  the  restric- 
tion of LTE-R  on the matter distribution  functions  requires  that 

where s, is the  source function,  and B, (T,)  is the  Planck  function, Te being  the  local  value of the 
electron  kinetic  temperature, which is the  temperature  we  shall  use  throughout th i s  report. 

Note: Not all authors  mean  the  same  thing by LTE.  For  example,  Aller (1963) uses it to  de- 
note  what  we  mean by LTE-R.  To  avoid  confusion,  the reader is urged  to  keep  in  mind  the  defini- 
tions  in  this  section. 

Radiative  equilibrium,  RE, is the  second commonly used  assumption  we  consider  here;  this is 
defined by the  statement  that  the  net  integrated f lux  

remain 1s constant with  depth in  the  atmosphere, F, being  the  monochromatic f lux  given by 

where p = cos9 and B is the  angle  between  an  outward  normal  to the atmosphere's  surface  and  the 
direction of the  radiation  intensity I,(p). Assumption  RE  obviously  implies  that 

g = 0 ,  - R E ,  

where  h is the  depth  parameter. If an  atmosphere is "in  RE"  then, in  the  absence of local, non- 
radiative  sources of energy,  the  radiation  field  carries a constant  fraction of the  total  energy  trans- 
ported  through  the  atmosphere.  In  the  absence of convective  or  conductive  energy  transfer, this in  
thrn  means  that  the  radiation  field carries all the  energy  transported  through  the  atmosphere. 
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Hydrostatic  equilibrium, HE, is the  third commonly  used  assumption  we  consider.  This  means 
that all velocity  fields are thermal,  unless  the  pressure, P, used  in  the following  equation for HE 
includes  the  turbulent  pressure  caused by small-scale  isotropic  turbulence,  in which case this too 
can  be  treated  under  the HE assumption. Any large-scale  mass  motions  and all motions  resulting 
in  a net mass  transport   across any  arbitrarily  oriented  surface  in  the  atmosphere  represent  depar- 
tures  from HE. Where  HE  applies,  we  can  use  the  equation 

where P is the sum of the  gas  and  radiation  pressure at a point, P is the  mass  density,  and g is the 
acceleration  caused by gravity. 

Consider,  in  turn,  the  applicability of LTE-R,  RE,  and HE to  the  solar  atmosphere.  Insofar as 
these  assumptions apply,  they  simplify  our  problem of deriving  the  temperature  distribution.  Where 
they do not  apply,  we must  introduce  less  restrictive  assumptions that can  be  justified. 

Before  evaluating  these  assumptions,  let  us  clarify  what we mean by photosphere,  chromo- 
sphere,  and  corona-subregions of the  solar  atmosphere  we shall refer  to constantly. W e  define 
the  photosphere as that  region of the  sun  we  can  observe  anywhere  in the visible  spectrum lying 
below the following zero point for height,  measured  positive  outward  in a radial  direction: h = 0 
is that depth in  the  solar  atmosphere at which  the radial optical  depth at A = 5000 Ais 1.0 X 1O-j. 
This  value  corresponds  to  the  zero point on the  chromospheric height scale  used  in  Chapter 6 of 
PSC. The  chromosphere  and  corona,  defined  in  terms of the  radiation  characteristic of each,  must 
necessarily  lie  above  this h = 0 surface. 

We a r e  now ready  to  evaluate  the  assumptions of LTE-R,  RE,  and HE. The first question  we 
should  pose i s :  At what  depth in  the solar  atmosphere  does  the  source  function  equal  the  Planck 
function so that LTE-R is valid? In NETPRF it is shown that for  "collision-dominated''  lines an 
approximate  measure of the  optical  depth  above  which the source  function  differs  from  the  Planck 
function is where E can be considered the ratio of collisional  deexcitation  to  radiative  deexci- 
tation ( E  is defined more  precisely by Equation 27). Thus,  for  those  lines  for which E << 1, the 
optical  depth  above which S ,  + B, (T,) will  be  large  compared with  unity. We shall see that E io4  
is a resonable  value  for  several  strong  spectral  lines  treated  in  this  report. So the  optical  depth 
at frequency v o ,  corresponding  to  the  center of these  lines  above which  LTE-R is invalid, is 
T~ 2 loa4. For these lines, only for T~ >> l o 4  can  we  be  sure that LTE-R  applies. On the  other 
hand,  we  shall see  that  S ,  2 BY (T,)  is a good approximation  for  the  solar continuum source  func- 
tion  in the photosphere.  Each  spectral  frequency  regime  must  be  tested  independently  for  the  va- 
lidity of LTE-R. Where  LTE-R is invalid, a more  general  expression  for  the  source  function  than 
S ,  = B, (Te ) must  be  used. 

Assumption  RE  provides a photospheric  temperature  distribution  close  to the empirically  de- 
termined one we  adopt,  but RE is certainly  violated  in the chromosphere  and  corona  where  the 
presence of nonradiative  energy  sources is necessary  to  maintain  the high temperatures.  Thus, 
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Equation 4 is not valid  for  these  regions. What we  need  for  the  temperature  calculation  there is 
a n  analogue of Equation 4 for  the case of departure  from  RE  caused by the  nonradiative  heating 
mechanism.  To  derive  this,  we start with the  transfer  equation  for a plane  parallel  atmosphere, 

with the  usual notation, as given  in Kourganoff  (1963). Source  function Su is a composite of line 
source  function sx and  continuum source  function S,. Introducing r v  : 

where  the  subscripts c and 8 refer  to continuum  and  line,  we can  write  composite  source function 
sy as 

Substituting  Equation 8 in  Equation 6, multiplying  both  sides by dT,,/dh, operating  on  both  sides  with 

and  recalling  the  definition of monochromatic f lux ,  Equation 3 ,  we  obtain 

where  the sum extends  over all N lines which are  important  energy  sinks  in  the  region  where we 
apply  Equation 9. We shall transform  equation 9 into a more convenient form for our  calculatimls 
after discussing  non-LTE  theory. 

We assume HE is our  calculations,  which  extend  from h = 0 to h - 1250 km. In the region lying 
above h - 1250 k m ,  this  assumption is invalid, owing to  spicules. It is possible  that HE is never a 
good assumption  for  any  region of the  solar  atmosphere.  This  question is complex  and we shall de- 
fer  a more  detailed  discussion  to  section E. 

Our general  procedure,  then,  will  be  to  develop  an  approximate  method  for  calculating  the 
chromospheric  temperature  distribution  for a gas  in which HE is assumed but departures  from 
RE  and, when important,  LTE-R are taken  into  account. 
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Another  assumption  we shall make is spherical  symmetry. Obviously, this  assumption is in- 
valid  in the upper  chromosphere  where  the  spicules are observed. We must  consider  atmospheric 
inhomogeneities in  greater  detail  in  the  photosphere  and  lower  chromosphere  to  see if we  can as- 
sume  spherical  symmetry  there. We do  this  in  Section E. Finally,  the  thickness dl7 of the  atmos- 
pheric  region  we  shall treat is very  small  compared  to  the  radius R of the  Sun;  this  justifies  the 
plane  parallel  atmosphere  approximation,  which  will be made throughout. 

6. The  Photosphere  and the Temperature  Minimum 

The  photosphere  has a two-fold importance  for our chromospheric  energy  balance  problem. We 
shall see later in  this  chapter  that,  in  the  lower  (deeper)  region of the  photosphere, the gas is con- 
vectivelyunstable  and  the  associated  turbulent  motions  provide  the  most  probable  source of me- 
chanical  energy  for  heating  the  chromosphere.  Also,  the  bulk of the solar  radiation  field  in  the 
continuum originates  in  the  photosphere,  and it is th is  background  continuum that will  be  important 
for  the  source  functions of certain  types of spectral  lines.  This  section is devoted to a brief  dis- 
cussion of this  continuum  radiation  field  and  the  associated  temperature  distribution  in  the  photo- 
sphere. We are  particularly  interested  in  the  temperature  distribution  in  the  outer  region of the 
photosphere  and  in the lowest  part of the  chromosphere.  In this region,  the  temperature  goes 
through a minimum,  whose  position  and  value we  want to know as accurately as possible. 

The  most  notable  feature of the  photosphere is the  continuous  radiation of the Sun. The  Sun's 
high surface  gravity  produces a rapid  density  increase  in  the  photosphere.  This  produces a rapid 
increase  in both the volume  emission  and  absorption  coefficients,  restricting  the  emitting  region 
to  depths  above h -400 km on our  scale of heights. We can  estimate  the  total  power output of 
the  photosphere by measuring  the  radiant  energy  from  the Sun at  a position on Earth.  All  values 
reported  in  Minnaert (1953) lie at or below 2.00 cal  min-  ',which  corresponds  to a net emer- 
gent  flux of 6.50 X 10 l o  erg  cm - sec- ' . We shall  see that this is at least  three  orders of magni- 
tude  larger  than  current  estimates of radiant  energy  losses  from  the  chromosphere  and  corona. 

Of even  more  interest  to  us is the  spectral  distribution of continuous  radiation.  Early  work by 
Abbot (1920)used  light  from  the  entire  solar  disk  and this gave  the  true  monochromatic  intensity. 
Later  work by Peyturaux (1951) used  light only from  the  center of the  disk,  thus giving the  radiation 
intensity  along  the  normal. We compare  the  two,using a reduction  factor  derived by Minnaert (1953) 
who tabulates the results. We have  graphed  these  data  in  Figure 1, along  with  black-body radiation 
fields at 6500"Kand 5800°K. The  curves  demonstrate that the solar continuum  radiation  approximates 
very  well a black-body or  thermodynamic  equilibrium  radiation  field at the given temperatures. 

Photographs of high spatial  resolution  taken  in  white  light  reveal a significant  intensity  fluctua- 
tion,  with a scale  for the brighter  features of the  order of 1000 km. These  bright  features are, of 
course, the granules, which  will be  discussed  in  Section E. The  values  for the emergent  intensities 
discussed so far are averages,  including  radiation  from  the  granules  and the material  between 
them. 
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The  temperature  distribution  in  the  photosphere  has  been  obtained  theoretically  and  empir- 
ically.  The  most  elementary  theoretical  temperature  distribution  that  reasonably fits empirical 
distributions  in  the  solar case is the  grey-body  distribution,  given  by 

where q(r) is a complicated  function  satisfying  1/2 < q < 1.0 and  tabulated  in  Chandrasekhar (1960), 
and T e f f  (the  "effective  temperature") is defined by 

I I I I I 50 
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and  the  observed  intensity IA in  Figure 1. The Y) 
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are LTE-R,  radiative  equilibrium,  and a grey 
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Figure  1-Spectral  distribution of solar radiation based ture  distribution  compares with values  from 
on  observational  data  and  comparison  with  Planck several  empirical  studies. 
function. 
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Figure  2-Comparison  between  observed  and  grey-body 
temperature  distribution  in  the  photosphere. 

The  closeness of the  fit  suggests  the as- 
sumptions  underlying  simple  grey-body  distribu- 
t ion  are  good ones  over  most of the  photosphere. 
It is already clear that B,, ( T e f f  ) gives a good 
representation of the  observed  solar  intensity, so 
it is not surprising  that  LTE-R  should  be a good 
assumption. As for  RE, it is shown in Section  E 
that  the  deeper  layers of the  photosphere  around 
7 5ooo = 1 a r e  convectively  unstable, but that  above 
this  region  RE  should apply. The  grey-atmos- 
phere  assumption  also  proves  reasonable  be- 
cause  the H- negative  ion of hydrogen turns  outto 
be  the  dominant  source of continuous  absorption; 
moreover,  studies of the H- absorption  coeffi- 
cient ay for both bound-free  and free-free transi- 
tions show that a,, has only a very  weak  frequency 
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dependence  over a frequency  band  that  includes  the  strongest  part of the  solar continuum. This 
dominance of H- was first suggested by  Wildt  (1939); the  ion  was first observed  in  the  laboratory 
by  Branscomb  and  Smith  (1955); a recent reference for  calculations of the  absorption  coefficient 
uy (H-),  which  contains  reference  to  previous  calculations, is Doughty et al. (1966a, 196613). 

Our discussion of the  grey-atmosphere  temperature  distribution  has  provided  some  useful  in- 
sights  into  physical  conditions  in  the  photosphere,  but  has  been of no help  to  us  in  fixing  the  tem- 
perature  minimum  mentioned  before. We can show from  Equation  10 that Te decreases monoton- 
ically  to a "boundary"  value of Te (r = 0) = 0.8544 Teff, so we learn nothing  about the  solar  atmos- 
phere  for T << 1.0  from  Equation 10. Can  we,  perhaps, learn  more about  the  temperature  minimum 
from  models  based  in  part on  observational  data?  PSC  contains a discussion of two temperature 
models  based on limb-darkening  measurements:  the  Minnaert  and the Pierce and  Waddell  models, 
which  appear  in  Figure 2. The  Pierce  and  Waddell (1961) model  appears  the  more  satisfactory of 
the two, based on  Thomas'  criticism  in PSC. We add  for  reference  the  Heintze  (1965)  model,  which 
is a slight  modification of the  Utrecht  Reference  Photosphere,  and the Bilderberg Continuum Atmos- 
phere, which is discussed by Gingerich  and  de  Jager (1968). The  temperature  curves  from  these 
latter two models lie on either  side of the  Pierce  and Waddell curve, which  we  adopt for  our  dis- 
cussion  here. 

Pierce (1954)  concluded  that  limb-darkening  measurements  in  the  continuum  for P 5 0.2 are 
not very  reliable  for  temperature  determinations.  Accordingly,  the  Pierce  and  Waddell  limb  dark- 
ening  measurements end at about this value of p.  However Dum (1959)  analyzed  observations  near 
the  solar  limb  in  the  continuum at A6600 A, carrying his limb  darkening  measurements I, (O,P) /  
I, (0,l)  right out to P = 0. H i s  data  for P 5 0.2 are more  reliable  than  those of previous  investi- 
gators  because he uses  a narrow-band  interference-filter  to  reduce the scattered  light,  thus  re- 
ducing  the  uncertainty A I v  ( 0 , ~ )  in I, ( 0 , ~ ) .  Dunn's results out to I-L 2 0.03 fall very  close  to  an 
extension of the Pierce and  Waddell data  curve.  Thomas  in PSC concludes  from  thesetwo  studies 
that we can  have  the  following Te ( T ~ ~ ~ ~ )  for 7 5 0 0 0  < 0.2: 

T e  -4750 4900 f 100" 5200 f 50" 

We accept these values out to r5000  = 0.02. 

We  now wish  to  proceed  outward  to  those  regions of the atmosphere  where  limb-darkening  data 
are of no avail. We begin by discussing  the  line-blanketing  effect,  to  estimate  roughly  the  gross 
effects of the  Fraunhofer  lines on the temperature  distribution  in  this  region  where T~~~~ < 0.02. 
We ask  for  the  effect of line  blanketing  on  the  so-called  "boundary"  temperature. 

The  gross  effects on the boundary  temperature  (or  temperature  minimum,  for  our  purpose) 
give  us  our first glimpse of the importance of non-LTE  effects on the solar  atmosphere. First, 
we recall that for  LTE-R, Sx = BY (T,). We  now anticipate a result  of the next  section,  and state 
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that  for  many  spectral  lines the source  function Sz can  be  written as 

where E is effectively  the  ratio of collisional  to  radiative  de-excitation,  In  NETPRF,  Thomas 
shows  that, if we  write  the  volume  absorption  coefficient as 

where K ~ ,  q, a r e  absorption  coefficients  for  true  continuous  absorption,  line  absorption,  and 
scattering,  respectively,  we  can  rewrite  the  transfer  equation  in a form  that  yields, (when  we oper- 
ate on  both sides with i . . . dpdu and  apply  the  condition of radiative  equilibrium of Equation  4)  the 
following two equations  for Te : 

for  the  case  where Sg is given by Equation 2, and 

for  the  case  where Sg is given by Equation 12. The  summation is over  the  number of lines  in  the 
spectrum.  Equations 14 and 15 illustrate  the  difference  between  the  LTE-R  case  and  the  non-LTE 
case of Equation  12 for  spectral  lines.  The only difference  in  form is the  inclusion of the  factor 
E j/( l  + E ) which multiplies  the  second  term on the  right  in  the  non-LTE  case. We have  already 
noted that  for many lines  in  the  solar  atmosphere E << 1. Thus,  the  effect of these  lines  in  lower- 
ing  the  temperature is less  than  in  the  LTE-R  case,  and we  would expect  the  temperature  minimum 
to have a higher  value  than i f  we  assumed Sg = B, (T , )  as in  LTE-R.  The  larger  value of the first 
term on the  right  in  the  non-LTE  case,  due  to  less  absorption by the  lines  (physically,  the  scatter- 
ing  term JJ, q5u dv predominates  over EB, ( Te) in Equation  12),  also raises the  temperature. How- 
ever, a detailed  calculation is required  to  determine the extent of this  effect,  because the change in 
the  expression Buj (T,) -JJ, dL, dv may  reduce  the  difference between the two cases. 

What we  need is a reasonable  estimate of the  temperature. In  PSC, Thomas  argues  for  avalue 
not lower  than 4750"K, occurring  in  the  interval I O - '  5 T~ 5 l o -* ,  with the  possibility of a somewhat 
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lower  value at a slightly  smaller r5 .  He bases this  conclusion  on-the  previously  mentioned  work 
of DUM and his  own model  for  the  chromospheric  region 0 5 h (km) 5 1300 which  we shall  describe 
in  Section D. 

A  slightly  lower  value  for  the  minimum  temperature is obtained  by  Curtis (1965) from  an anal- 
ysis  of the  sodium D lines.  The  analysis is based on limb-darkening  data on the  sodium D lines 
collected  earlier by Waddell (1962). Following a suggestion by Jefferies,  Curtis  assumes  that the 
line  source  function SJ is equal at a given  physical  depth  for the two  components Dl and D, of the 
sodium  doublet  and  estimates  the  value  and  location of the  minimum  temperature.  The  derived 

i temperature  distribution  reaches a minimum of about 4600°K at T~~~~ = and  retains this value 
out to T~~~~ = This result is not inconsistent with the above-mentioned  conclusions of Thomas 
and is also  very  close  to  the  temperature  distribution of the  previously  mentioned  Bilderberg Con- 
tinuum  Atmosphere  in  the  range l o - '  2 T~~~~ > We shall adopt the value T, = 4600" for  our 
temperature at h = 0, which l ies   in  the above  optical  depth  range.  Unfortunately  we  cannot  say  with 
certainty  that we have not overestimated  the  minimum  temperature.  For  example, Athay  and 
Skumanich (1968) conclude  from  their analysis of the CaII K line that a minimum  temperature of 
- 4200°K is required  to  match  their  computed K ,  profiles with  observations. We hope that this  dis- 
crepancy  will be cleared  up soon. 

NOW, let us  discuss  the  chromosphere  and  corona  to  see  what  physical  conditions  exist  there 
and  what  temperature  models  for these regions  have so far been  derived. It would be  advisable  to 
set down beforehand  the  basic  ideas  and  relations of non-LTE  theory,  which  will  be  used in  dis- 
cussing  the  outer  atmosphere  and  in the derivation of the equations  for  the  chromospheric  tempera- 
ture  calculation. 

C. Non-LTE  Theory for Solar Spectral  lines 

First, let us  emphasize that non-LTE  does  not  mean  we are  forcing  the  source  function  to de- 
part  from the Planck  function.  Instead, it means  that we assume the more  general  condition of a 
statistically  steady  state  and  derive a source  function  which,  under  the  special  conditionsfor  LTE-R, 
will  equal  the  Planck  function. We shall follow  NETPRF  quite  closely,  but  necessarily be much 
more brief. 

The  non-LTE  theory  grew  from  an  attempt  to  express  the  source  function for spectral  lines 
formed  in  an  atmosphere  where  simple  estimates  readily show that collisional  processes do not 
control  the  internal,  atomic-energy  level  populations.  This is certainly  the  case  in  the  atmospheres 
of the Sun and  most stars. The  radiation  field  which,  therefore,  plays  an  important if  not  dominant 
role   in  fixing  local  energy-level  populations  must be considered.  This  radiation  field is produced 
in  .regions of the gas  where  excitation  conditions  are  usually not the  same as conditions  where  we 
want  to know the  source function.  Through its radiation  field, the source  function  depends  on a 
range of excitation  conditions-not  just  those  conditions at the  point in question. 

!. 

I 1 To develop a more  general  expression  for the source  function  under  these  conditions,  we  must 
1 assume a more  general  physical  condition  to exist locally  than  LTR-R. We presuppose a 
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statistically  steady state (abbreviated SSS), given by 

&k 
= 0 ,  - sss , 

where nk is the  number  density of a given  chemical  species  in  the k- t h  energy  level.  The  non-LTE 
theory  based on Equation 16 applies at each  instant of time only  when the  time  for a transient  per- 
turbation is long  compared  with  the  time  for a SSS to  be  established.  It  may  be  objected  that a 
shock-heated  gas  does not generally satisfy these  conditions.  However,  in this  study,  we are con- 
cerned only  with time-averaged  quantities. We ignore how the gas  relaxes after a shock  wave  pas- 
ses through it, and how a chromosphere-corona  develops out of an  atmosphere  in  radiative  equili- 
brium after a source of mechanical  energy  dissipation  in  the  atmosphere  has  been  "turned on." 

We proceed  to  derive  the  source  function  for a spectral  line  in  an  atmosphere  in a SSS, fol- 
lowing  NETPRF.  Thomas  shows  that  the  source  function  for a transition  between  an  upper-level u 
and a lower-level L can  be  written  in  the  following  general  form: 

where j v ,  d, , and +, are called  "profile  coefficients"  for  spontaneous  emission,  absorption,  and 
stimulated  emission,  respectively; g, and g, are statistical  weights  for  levels U and L,  respectively; 
and  the  other  symbols  have  their  usual  meaning.  The  profile  coefficients  are  normalized, so their 
integral  over v and  solid  angle is 47r. If 4v = +v , the  above  reduces  to  an  expression  written  more 
compactly as 

S, 

where 

The  advantage of Equation 18 as a form  for 
tors,  giving  the  frequency  dependence of S, 

In  LTE-R, 

the source  function is that it separates S, into two fac- 
on frequency  and the occupation  numbers,  respectively. 

gu  "L 
" 

g, nu - exp{$} ' 

so T,, - T, or  B, (Tex) - B v  (T,), as must  occur for the non-LTE  theory to be  valid. 
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The  factor jv/4u is evaluated by Thomas (1957) for  the  central  core of resonance  lines on the 
assumption  that  chromospheric  conditions  apply. He concludes that the  profile of the absorption 
coefficient is Doppler  out to  some three Doppler  half-widths  from  line  center,  and that the  ratio 
ju/+u equals 4 at the  most,  over  the same Doppler core.  Since  the  number of absorbers  for  the 
Doppler  (Gaussian)  line  profile  varies as exp{- ( A V / A V ~ ) ~ }  (where AuD is the Doppler  frequency half- 
width) nu/&, = 3  corresponds  to a variation  in  the  absorption  coefficient of e' ? l o 4  over  the Dop- 
pler  core of the  line.  Since  our  chromospheric  temperature  calculations of Chapter IV will  require 
source  functions  for  three  resonance  lines (Ly a, and  the  resonance  doublets of CaII and MgII), all 
of which  have their cores  formed  in  the  chromosphere, we  conclude  that  Thomas'  conclusion  on 
j y  4u applies;  furthermore,  we  ignore  frequency  dependence  altogether by estimating 1 

It is easy to derive a general  expression  for Bv (Tex) ; See Appendix A. Our starting point is 
Equation 16, expressing  the  statistically  steady  state. Following Thomas  in  NETPRF,  we  introduce 
a "net rate  bracket" notation for  treating  the net ra tes  of various  processes. If P - R refers  to  the 
net rate of process P ( R  is the  reverse  process),  then  for P (radiative; U , L) we define  the  net  radia- 
tive  bracket (NRB),, as 

Y r a d ;  U ,  L )  - R(rad;  L,  U )  = nu A,, (ram),, . 

Likewise we  define the net  collisional  bracket (NCB),, as 

InEquations 21  and 22 A,, is the  Einstein  coefficient  for  spontaneous  emission, and C,, is the  ine- 
lastic  collision  rate, which we assume  for  collisional  excitation by free  electrons is given by 

where ne is the electron  density, gLu is the  inelastic-collision  cross  section  for  these  collisions, 
f e  (v) is the  electron-velocity  distribution  function (which we  assume is Maxwellian)  and vLu is the 
minimum  velocity  for  collisional  excitation  obtained  from  1/2 mv?, = xLU , where xLU = xL - X,, is 
the difference  in  ionization  potentials  between  levels L and U .  

Using the net  brackets  defined by Equations  21  and 22, we  can  write a completely  general 
expression  for the equation of statistically  steady state (Equation 16). For a level k, this 
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expression  becomes 

Subscript K refers  to  states  in  the continuum; n i  is the ion  density.  According  to  convention,  we 
include  collisional  processes that have  an  upper  level  in the continuum in  the last term of Equa- 
tion 24. To  obtain  the  desired  expression  for R, (Tex), we  write Equation 24 for levels U and L of 
the  transition. We solve  these two equations  for n u / n L ,  then  substitute  this  expression for nu/", in 
Equation 19, thus  arriving at the  desired  expression for B, (Tex) given below. (Refer  to Appendix 
A  for  details.)  The  result is 

where 

Quantities 6 1, 6 3 ,  FL , and F, have  not  yet  been  introduced; Appendix A gives  their  detailed 
functional forms. Here,  to  save  space,  we  merely state what they  represent  physically.  These 
four  quantities  equal  zero, if  we  consider  our  atom  to  be  made  up of only two levels, U and L. In 
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this  case, B, (Tex) becomes 

where  collisions  and  the  radiation  field  in  the  line  itself  control BY (Tex). In general, S 1, S,, F,, 
and F, express the dependence of B, ( T e x )  on  collisional  and  radiative  processes that couple U and 
L to  levels  other  than u andL.  In  particular,  we  see  from Appendix A that 6 ,  represents  terms that 
depopulate L through all levels  exceptu , S, represents  terms  that  depopulate U through all levels ex- 
ceptL , F, represents   terms that populate L through all levels  except U , and F, represents  terms 
that populate U through all levels  except L . 

When we use B,(T, , )  in  Chapters 111 and IV, we  find  that  the  line  source  function of Equation 
30 is probably  often a good approximation;  in all other  cases,  we  consider  the  dependence of 6 1, 

S, ,  F,, and F, on the continuum only. Here,  we  work with  only  two level  atoms, or with atoms  ap- 
proximated by two levels  plus a continuum. When these  simplified  treatments  are not justified, 
we  must  use  Equation 25, including as many  additional  levels as a r e  needed. 

Now it is evident why LTE-R is a poor  assumption  for  strong  chromospheric  lines of the  sort 
we shall treat in  the  energy-balance  problem. In the  two-level  atom  source  function  (Equation 30), 
BY (Tex) - BY (T,) only i f  IJ, 4, dv - By (Te), or i f  e and EB, (T,) >> IJ, d y d u .  We noted in  Section  A 
that, for  the  lines of interest  here, E 2 10 -4 .  The  second  alternative  above is ruled out immediately. 
To see  from what  depth in  the  atmosphere  the  radiation  field  escapes at the  outer "boundary" T~ = 0, 
and  hence how far the  influence of the  boundary  penetrates  to  producing  an  anistropy  in I,, negating 
JJ, d,du = B, (Te), we  use  the  following  fact: E -  provides a rough measure of the  optical  thickness 
of a region  through which a photon will  move,  once it is created  and  before  it is destroyed. Above 
optical  depth E -  the  radiation  field is anisotropic, as there   a re  not enough sources  lying  above  the 
point in  question  to  provide  an  inward  directed 1;to equal  the  outward  directed 1;. 

Thus,  for T~ < 10  for  the  lines involved in  our  final  calculations,  LTE-R is certainly invalid. 
A rough  criterion  for  LTE-R  then  becomes: ~7~ >> 1. A more  rigorous  development  in  NETPRF 
yields  the same result, as well as a very lengthy criticism of the  misuse of the  LTE-R  assumption. 

Earlier in this section,  we  mentioned  that we would want source  functions  for Lyu  and the  reso- 
nance  doublets of Call and MgII. We shall  also find Ha an  important  chromospheric  line, though  we 
shall not solve a transfer  equation  for it. Jefferies and  Thomas (1959) offer  some  interesting 
general  results on  Ha and  ionized  metal  lines;  Morton  and Widing (1961) make a detailed  study of 
Lya.  A  summary of the  relevant  findings of these authors  appears  in  NETPRF.  More  detailed 
studies of these  lines  have  recently  been  made, but  they  do not affect these general  comments. 

In an  effort  to find the proper  form of the  source  function  for  different  types of lines,  the 
general  source  function of Equation 25 can  be  written  in  several  different  ways,  each  corresponding 
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to  different  physical  mechanisms of line  formation.  Jefferies  and  Thomas  considered  the following 
two  possibilities: 

where 7) and TB* a r e  given below. Equations 30 and 31 a r e  identical  in  form  and  represent  the two- 
level  atom. We call JJ, 4,dv the  "storageterm,"as it represents  scattering which neither  enhances 
nor  depletes  the  radiation  field  in  the  line. We call E B ,  (T , )  a "source  term,"  along  with T B *  in 
Equation 32. We call E in Equation 31 and 77 in Equation 32 "sink terms."  The  source  terms en- 
hance  the  radiation  field  in  the  line,  while  the sink t e rms  inhibit  the  build-up of this  radiation  field 
by representing  direct ( E )  and  indirect ( 7 7 )  ways of populating the  lower  level  at  the  expense of the 
upper  without  producing  line  radiation. Note that Jefferies  and  Thomas  chose  source  functions 
whose  source  and  sink  terms  are  collision-dominated  in  the  case of Equation 31, and  dominated by 
radiation  fields  in  the  free-bound continua  coupled to  the  upper  and  lower  levels of the  line  transi- 
tion  in Equation 32. We can  see this for  the  latter  case, if we  take  Equations 28 and 29 for 7 and 
TB*, ignore all levels  except U and L of the  line  and  the continuum,  and  consider only radiative 
transitions between the continuum  and u and L. We obtain for 77 and B': 

' K 1  e 
77 ( a t o m i c   p a r a m e t e r s )  . . p - y 2  - (33) 

where WK1 is the  dilution  factor  for  the  Lyman  continuum, y k  Xk/kTrk , and Trk is a radiation  tem- 
perature  for  the  mean  radiation  field  in  the K - k free-bound  continuum  such  that J, ( K - k )  
2 B, ( T r k ) .  The  atomic  parameters,  in  general,  vary  from  line  to  line. 

The  important  conclusion of the  Jefferies  and  Thomas study is that  there is an  apparent one- 
to-one  correspondence  between  type of source function, or mechanism of line  formation,  and  type 
of emitter,  or class of line-forming  ions  in the solar  atmosphere. Using source  functions  given by 
Equations 31 and 32 to  solve  the  transfer  equation  for  representative  models of the  chromosphere, 
they  obtain line  profiles  typical of ionized  metals  from  Equation 31 and  line  profiles  typical of 
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neutral  metals  and  the  Balmer  lines  from  Equation 32. The  ionized  metals'  source  functions  are 
called  "collision-dominated,"  and  the  neutral  metals'  and  Balmer  linesksource  functions are called 
"photoionization-dominated," after  the  dominant  source  and  sink  terms.  The  line  shape of the two 
types  appears is Figure 3. 

The  Mortonand Widing study  considers  Ly a ,  

which is a strong  emission  line with a central 
reversal  35 percent below the  intensity  maxima 
on either  side.  Evaluating E ,  By (Te ) , 77, and B* 

from  Equations 27, 33, and 34, Morton  and 
Widing find  that €By (T,) .>> 7 B * and -7 > > E .  Thus, 
for  Ly a ,  which becomes a line of the "mixed 
type" of source function, 

A 

\ 

Figure  3-Line  profiles in cores  of (A) collision-dominated 
lines  and (B) photoionization-dominated  lines-asyrnmetrics 

Bv P e x )  = l - t n  (3 5) ignored. 
~~ 

Equations  31,  32,  and 35, to  the  first  approximation  source  functions  for  three  types of solar 
lines,  cover all interesting  possibilities. Although we  need  detailed  studies of individual  lines  (for 
which good observed  profiles are  required)  to specify  more  completely the details of the  line- 
formation  mechanism,  this  rough  scheme  for  classifying  solar  lines  will  serve  for  our  preliminary 
calculations. 

There  are  two more points  to  be  made,  before  leaving  the  subject of the  source function.  The 
ionized  metal  lines  and  Lya  have  source  functions for which the  source  terms exhibit a first-order 
dependence on, the  local  electron  temperature T ~ .  This is not true of the  Balmer  lines or the neu- 
tral metal  lines.  This  will  be of some  importance  to  our  discussion of the  energy  balance  in Chap- 
ter  IV. Also,  the  T,-dependence of the  first  named  lines  demonstrates  the  existence of a tempera- 
ture  rise  in  the  chromosphere,  discussed  in  detail by Jefferies  and  Thomas (1959,  1960). 

The  final  matter  we  wish to consider is a convenient form  for  the  net  brackets defined by 
Equations  21  and 22. Here  we follow NETPRF  exactly. W e  can  write Equation  21 in  the  form 

where B,, and EL, are  the  Einstein  coefficients  for  stimulated  emission  and  absorption,  respec- 
tively,  and  the  other  symbols  have  been  defined.  Combining  Equations 21 and 36, we obtain 



Now let  us assume that dY = $", as we  did t o  derive  Equation  19  for BY (Tex); and  then, after using 
the  relations  for the Einstein  coefficients, 

le t   us  combine  Equations  19  and 37.  Then  we  obtain 

L 
To obtain a simple  expression  for (NCB),,, we  proceed  in a similar way. We can  write Equa- 

tion 22 as 

P(co1; L, U )  - R(co1; U ,  L )  = n L C L u  - n U C u L  , 

where the notation is obvious.  Equations 40 and 22 give 

which can  be  written as 

where  we  use  the  Boltzmann equation for  the  ratio (n,/n,). in  LTE,  the * indicating  LTE,  and  in- 
troduce  so-called  "departure  co-efficients" b k ,  defined by the  LTE Saha  equation 

which is equivalent to 

b, = - 
n k  

t '  

" k  
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since  the  quantity  in  square  brackets-in  Equation 43 is the LTE  value of n k  at local  values of 
ne , n i  , Te . Also X,, I XL,lkT,, and,  in  the  Saha  equation, U i  is the  partition  function  for  the ion. 

Other  symbols  should  be  self-evident. Now, in  LTE, 

as (NCB),, = 0 from  detailed  balance  and b, = b, = 1. Remembering that we  assume a Maxwellian 
velocity  distribution  for  electrons,  and  noting that C,, and C,, then  assume their LTE  values, we 
obtain 

(NCB),, = [I - 21 . 

This is the  desired  expression  for (NCB),,. 

Equation  39  for  the (NRB),, appears  in  the  energy-conservation  equation we shall solve  for 
our f i n a l  chromospheric  temperature  distribution. Equation 41  for  the (NCB),, appears  in the ex- 
pression  we  derive  for  the  apportionment of mechanical  energy  among all spectral  lines  formed  in 
the  same  region of the  atmosphere. 

Now let  us  consider  current  models  for  the  chromosphere  and  corona-especially the chro- 
mosphere. We sha l l  find that the detailed  model of the low chromosphere  described  in  Section D 
is based on studies of emission  in  line-free  regions of the continuum. Thus, at first we  need not 
use  everything developed in th i s  section, but  we must still use  the  general  principle of a SSS con- 
tained  in  Equation 24.  We shall find that significant  departures  from  LTE-R  do  occur  in the  low 
chromosphere. 

D. Solar  Chromosphere and  Corona 

In Section A, w e  defined the top of the  photosphere by the  surface which lies at normal  optical 
depth  1.0 x at A5000 A. This  defines  the  base of the chromosphere  and  the  zero point for  our 
vertical height scale,  measuring  positive upward.  The  chromosphere  and  corona  comprise  the 
entire  region  lying  above h = 0; hereafter  we  refer  to this composite  region as the "outer  solar 
atmosphere."  The  chromosphere  and  corona  are,usually  defined by the  types of emission  charac- 
terist ic of each  (van  de  Hulst,  1953).  In  general,  then,  we  describe as chromospheric  the "flash" 
spectrum  seen at the limb  in  eclipse.  This  spectrum  consists of emission  lines of hydrogen,  neu- 
tral metals,  singly  ionized  metals,  neutral  helium,  and  ionized  helium.  There is also a background 
continuum of the H- ion  and  the  lower  free-bound continua of hydrogen. Much of the continuum is 
scattered  radiation.  A  more  detailed  consideration of chromospheric  lines  and the question of how 
much of the continuum emerging  from the chromosphere is scattered  photospheric  radiation  will 
appear  in  Chapter IV. 
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There is some  question about the  origin of certain  lines  from  ions of ionization  stages  inter- 
mediate  between  chromospheric  values  (neutral,  singly  ionized  metals)  and  coronal  values  (same 
metals - Cay Fe - many times ionized). For example,  strong  lines of CIV,  X1548, and OVI, A1038, 
and k1032, are  seen  in  emission  in W disk  spectra  (Detwiler et al., 1961). We shall not attempt 
to identify these  lines as either  chromospheric or  coronal.  Their  existence  does  illustrate a vex- 
ing  problem,  however:  the  nature of the  transition  region  between  the  chromosphere  and  corona. 

The  corona is characterized by emission  lines of highly  ionized  metals,  superimposed on a 
background of partially  polarized continuum  radiation.  The  corona has a mean  density  several 
orders  of magnitude  lower  than  the  chromosphere. As  a result,  the  net  energy  losses  from  the 
corona,  estimated  in  Chapter IV, fall about  two orders of magnitude below our net-loss  estimates 
for  the  chromosphere.  Also,  the  chromosphere's  location  just  in  and beyond the  temperature  mini- 
mum  gives it a basic  role  in  the  energy-balance  problem,  since  the  source of mechanical  energy 
seems  to  lie  in  the  subphotospheric convection  zone. We shall  restrict our calculations  to  the 
chromosphere  in this report,  subject  to  some  uncertainty as to  where  the  boundary  between  chro- 
mosphere  and  corona  lies. 

A  general  feature of chromospheric  emission  lines  discussed  in PSC is that  their  intensity 
scale  height is much  larger  than  the  pressure-density  scale  height H = @Te/x (where R ~ 8 . 3 1  x l o 7  
ergs'K-  mole" is the  gas  constant,  and i~ is the  mean  molecular  weight)  for  an  isothermal  atmos- 
phere,  evaluated at our  minimum  temperature Te = 4600°K. This  strongly  suggests  an  outwardly 
increasing  temperature  and  possible  departures  from  LTE-R, both of which we find in  the  chro- 
mosphere. An increase  in  temperature  will  increase the local  pressure-density  scale height. The 
exact  role of the  non-LTE  effects  will  become  apparent only after a detailed  study of each  emitting 
ion. 

The  model  we  shall  adopt  to  begin  our  calculations  for  the first 1300 km above  our  zero point 
is the  model  derived  in  chapter  6 of PSC. Table 1 gives  the  quantities  derived for this model. We 
choose  this  model,  based on data  obtained at the 1952 Khartoum  eclipse  expedition,  because  the 
method of analysis is highly self-consistent. We cannot accept  those  earlier  models,  typified by 
the  one  given by van  de  Hulst (19531, which neglect all non-LTE  effects  in  their  analysis.  The 
Utrecht  Reference  Photosphere (Heintze  et al., 1964) of the  photosphere  and low chromosphere  ex- 
tends out only to h ? 230 km on our  height scale,  and  the  Bilderberg Continuum Atmosphere (Gin- 
gerich  and  de  Jager, 1968) ignores  the  conflicting  results  from  line-profile  analysis.  Thus,  for  our 
calculations  based  largely  on  features of the  chromospheric  line  spectrum,  the PSC model of the 
region 0 5 h 5 1300 km seems  best. 

The  PSC  model  for 0 5 h 21300 k m ,  a region we shall  hereafter  call  the 'tlow chromosphere," is 
obtained from data in  the  optical continuum. The  choice of continuum data is prompted,  in  part, by 
a desire   to  treat that  spectral  region  where  strong  self-absorption  plays a negligible  role. A thin 
atmosphere  analysis,  where a SSS assumption  in  the form of Equation 24 takes  account of non-LTE 
effects, is all that is required. No transfer equation  need  be  solved, as all relevant  radiation  fields 
are known, except  for the radiation  field  in  the  Lyman continuum discussed below. 
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Table 1 

Model of Low Chromosphere  from  Chapter 6, PSC, Using Tables 6-9 and 6-10. (Subscripts 1 and 2 
refer  to  levels in atomic hydrogen.) 
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The  model is based on observed continuum radiation  at X3646, which is the  head of the  Balmer 
continuum,  and at X4700. Rayleigh scattering due  to  neutral  hydrogen is taken  into  account;  also 
Thompson  scattering,  free-bound  and  free-free  scattering of H- , free-bound  transitions  in  the 
Balmer continuum at ~ 3 6 4 6  and  in  the  Paschen  continuum  at A4700, and  free-free  transitions of 
hydrogen at A4700. The  observations  give  two  equations  in  four unknowns: n e  , T e , n H ,  and np. An 
assumed  hydrogen/metals  ratiofor h 5 500 km or the  assumption ne = n p  for h > 500 km adds a 
third relation. For the  region h > 500, an  expression  based on the SSS relation  (Equation 24) for 
b,  ( n e  , T e ) ,  defined by Equation 43, provides a fourth  equation.  The b, (ne,Te)relation is derived 
assuming  detailed  balance  in the Lyman  continuum,  and a correction  scheme is introduced  to allow 
for  some  departure  from  detailed  balance.  Spherical  symmetry is assumed. 

Actual  construction of the  model is complicated  and  involves  selecting good data  points  to 
provide  boundary  conditions  to start the  integration, as well as invoking  other  relations  to  sup- 
plement  estimates  made  in  regions  where  the data are  considered  unreliable. For example, hy- 
drostatic  equilibrium is assumed,  to  get the results  for h 2 750 km. The  data below 500 km are 
not reliable,  and  begin  to  enter  the  region  where  self-absorption is not negligible as we approach 
the  limb.  Thomas  notes that in  the  range 0 '< h l  500 km the Te values of the  model are  an  upper 
limit, which is .reassuring  in view of the  great  discrepancy between the Te (h  = 0) of this  model 
and  our  adopted  minimum  temperature of Section B. 



What are the  conditions  beyond  the low chromosphere? Hiei  (1963) concludes  that  spicules 
extend at least  as far down as h = 1500 k m ,  and  there is evidence  that  they  may  extend down farther 
(House,  1961). The  region 1300 5 h (1500 km is certainly unknown territory,  and  the  situation is 
little better  from h 2 1500 km until  the  corona is reached.  The  unanswered  questions  include: 

What is the  state of the  gas  in  spicules? 

What is the  state of the  gas  in  the  interspicular  material? 

What fraction of the  surface  area  at a given  height h is covered by spicules? 

How far does  the  corona  penetrate  into  the  interspicular  material, if  it penetrates at al l?  

There is no universally  accepted  answer to  any  of these  questions. 

In Chapter V of PSC, Athay considers  some  general  stability  arguments which  he  uses,  along 
with an  analysis of emission  in  the  region h 2 1500 km, to  produce a model  for this region.  A 
stability  criterion is obtained by requiring  that  an  increase  in  energy input d E i n  must  cause  an 
increased  energy output dEOu along with the  associated  initial  rise  in  temperature,  such  that 

Thus, at any  point in  the 

dE0" f 
dTe 2 

atmosphere,  we  require  an  increase  in  net  radiative  losses  to 

(45) 

counter a 
small  temperature  increase,  and  vice  versa, or the  atmosphere is unstable.  Consider a point in 
the  atmpsphere  where Te has reached a value at which there   a re  no efficient  radiators  to  provide 
the  necessary Eo" ~ to satisfy inequality 45. In the  presence of an E i  ", the  atmosphere  will not be 
stable  at  this T c .  Obviously, the  atmosphere  temperature  will  rise  until,  through  some  process 
such as ionization, a new efficient  radiator  will  be  produced  and  condition 45 can  be  fulfilled  again. 
The  atmosphere  will  be  stable at the new Te . The  process is presumably  repeated  at  each  stage 
of stable  equilibrium, as the  temperature  increases as height increases  until the efficient  radiator 
becomes  inefficient, at which  point the  atmosphere  finds a new stable  equilibrium at a higher  tem- 
perature.  The  process  stops when is exhausted,  presumably  somewhere  in  the  solar  corona. 
Beyond that  point  the  process  might  be  thought  to  reverse as Te decreases with  height, but other 
complications  enter  and  we  wish  to  consider only the  upper  chromospheric  regions. 

An idealization of an  atmosphere, viewed from  this  simple  stability viewpoint, would be a 
succession of temperature  "plateaus"  connected by infinite  temperature  gradients. In reality, 
conduction arising  from  these  infinite  temperature  gradients  and  radiative  energy  redistribution 
between  and  within the  plateaus  should  smooth out the  temperature  curve, but the  gross  feature of 
very shallow rises connected by steep rises will  presumably  remain.  As Athay argues  in PSC, 
there is evidence from  spectral  data  that  this is true  for  the  outer  solar  atmosphere. 

Athay notes  that if observed  stages of ionization of common  elements a r e  plotted  against  cor- 
respondingionization  potentials,  there  are  gaps  in which no stages of ionization of certain  common 
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1 elements are observed  in  the  solar  atmosphere,  even though a corresponding  stage of ionization 
should be expected on chemical-composition  grounds  alone.  The  inference is clear:  the  ion w e  

I 
r !  
d' expected to  observe is not present  over a significant  height  range.  The  most  direct  explanation, 

in  the  light of our  comments  above, is that very  little  atmosphere  gas is at the temperature at 
which we  expect t o  find  the  ion  (considering  non-LTE  effects, of course).  This  temperature  lies 
on one of the  steep  r ises of the  temperature  curve.  The  reason is that not enough of the ion is pre- 
sent  to  provide a sufficiently  strong  radiator  to  satisfy  inequality 45, so instead of forming a plateau 
at Te (ion), Te continues to rise. 

On the  basis of these  considerations,  and  after  studying  emission  from  hydrogen, HeI, and Hen, 
including the  Lyman  continuum of hydrogen  and  Hen, Athay concludes  that the  hydrogen  emission 
comes  from  the  spicules,  and  the helium emission  from the interspicular  gas,  in the region h 2 1500 
km.  However,  conditions at  the  top of the spicular component a r e  found to blend  with  those of the in- 
terspicular  matter,  suggesting a rapid  temperature  r ise  near  the  top of the  spicules. 

We shall not digress  to show how Athay constructed a model for  the  chromospheric  region 
1500 5 h 5 4000 km. We only  note that his  results show a strong dependence on the  values of elec- 
tron  density n e  used  in  these  regions,  and  the  uncertainty  in n e  may  be as high as an  order of mag- 
nitude.  Table 2 gives  the  resulting  model of this  region 1500 5 h 54000  km, which we shall call  the 
"upper  chromosphere." We see  that he calculates  the  fractional area covered by the cold  compo- 
nent (spicules),  and  also  the n e  and T, values  for both  components. 

Table 3 gives  the  fractional areas covered by both  cold  and hot components,  from  Table 2. This 
can  be  used  to  construct a temperature  model  for a spherically  symmetrical  atmosphere  whose ex- 
citation  conditions  lie  between  those of the  cold  and hot components. We can  use  such a rough tem- 
perature  distribution  to  begin our calculations. 

To construct  this  temperature  model,  we  assume  pressure  equilibrium  between  the hot and 
cold  components.  Thus,  for PC = Ph, we defineR : 

Table 2 

Model of Upper  Chromosphere from Chapter 7 of PSC 
where  a = Percent of Surface  at h Covered by Cold Component. 
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where nc and n, are particle  densities  for the two  regions. We now form  our "weighted tempera- 
ture" T e w  in  the following manner: 

'ew = ' A h T e h  ' (49) 

where  the  fractional  areas a c  and a,  appear  in  Table 2, and T~~ in  Table 4. 

Table 4 It is appropriate now to  consider  some of the 

Weighted Temperature Te,N for  Upper Chromosphere shortcomings of Athay's upper-chromosphere 
Based on Table 3 and Equations (46) - (49). model. Athay knew that  it  predicted much  higher 
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intensities of radio  emission (due to  free-free 
electron  transitions  in a proton  field)  than are 
actually  observed.  To  remove this  discrepancy, 
he  made a complicated  alternation,  in PSC. A 
more  radical  suggestion  was  made by Zirin  and 
his  co-workers  (Zirin  and  Dietz,  1963;  Zirin  and 
Howard,  1966; Zirin,  1966):  that  the  interspicular 
region is coronal  gas,  and all the  helium  emission 
hitherto  ascribed  to  this  interspicular  gas,  aswell 

as the  radio  emission and  hydrogen  emission,  actually a r i s e s  in  spicules. While there is some  ad- 
ditional  evidence  for  coronal  excitation  in  the  upper  chromosphere, no quantitative  treatment of 
this  problem has so far appeared. We a r e  left with no satisfactory  model of this  region,  and  ter- 
minate  our  calculations  in  Chapter IV at h = 1250 km. 

Regardless of what  model  for  this  region  finally  emerges,  electron  thermal  conduction is cer- 
tain  to play an  important  role  somewhere  in  the  transition  region  between  the  chromosphere  and 
corona. We do not consider a mechanical  flux of energy down from  the  corona due to conduction 
in  the  spherically  symmetric  model we construct, as this conduction is demonstrably  negligible 
over  the  greater  part of the  region  covered by our calculations. 

This  completes  the  background  material  dealing with radiation-matter-interaction  aspects of 
the  solar  atmosphere. Now we shall  consider  macroscopic  velocity  fields  and  possible  mechanical 
energy  sources  for  heating  the  outer  atmosphere.  Sections E and F a r e  devoted to  these  subjects. 
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E. Velocity  Fields and Inhomogeneities 

So f a r ,  we  have not questioned  our  assumptions of HE and  spherical-symmetry  in  the  chromo- 
sphere  in  the  light of ambient  velocity  fields  and  inhomogeneities. Also, observed  velocity  fields  may 
provide  indirect  support  for  the  energy-generation  mechanism  and  the mode of energy  transport dis- 
cussed  in  the  next  section.  The  suggestion  for  acoustic-wave  generation,  propagation,  and  shock 
dissipation at least  must  agree with these  fields,  This  section is devoted to  the  observational study 
of velocity  fields  and  inhomogeneities  in  the  solar  atmosphere.  Some  current  theoretical  interpre- 
tations of these observations  will  be  discussed  in  the next  section,  together  with  the  actual  mechani- 
cal  heating of the  atmosphere. 

Photospheric  granulation is the first phenomenon  we  consider.  Granulation is an  aggregate 
of cells which are  brighter  than  their  surroundings when seen  in continuum radiation  and  appear 
roughly  circular  near  the  center of the  solar  disk.  Since  optical  depth  unity  occurs  somewhere 
around h = -350 km in  the continuum at A = 5000 A, depending on the photospheric  model  (Minnaert, 
1953), this  is the  region of t h e  photosphere  where  we  see disk granulation. A detailed  study of 
granulation has been  made  both by Bahng and  Schwarzschild (1962) and by Edmonds (1961). Both 
studies  are  based on observations obtained from a balloon-borne  telescope  launched  under Sch- 
warzschild's  direction  (Project  Stratoscope). In spite of differences  in  their  interpretations, both 
studies  agree that disk granulation  represents  elements with diameters  ranging  from a few hundred 
to 1800 k m ,  a mean  lifetime of six to nine  minutes,  and a mean  temperature  excess of several hun- 
dred  degrees  above  the  intergranular  matter. 

0 

The  best  current  account of the  nature of disk  granules is given by Btjhm-Vitense  (1958)  and 
Biermann,  et al., (1959);  their  quantitative  calculations  support  what had already  been  conjectured: 
that disk  granules  are a manifestation of convection at the  top of the  Sun's  subphotospheric  convec- 
tion  zone.  Indeed,  they a r e  thought to  be  the  convective  elements  in  the  observable  region of the 
convection  zone.  That  the  innermost  region of the  observable  photosphere is convectively  unstable 
has  long been known, from  applying  the  familiar  Schwarzschild stability criterion  to  the  region's 
temperature  gradient. A simple  application of Prandtl mixing  length  theory of turbulent  convec- 
tion  to this convectively  unstable  region  permits  us  to  examine  granulation  data  to see i f  the 
granules could be convective  elements.  This  approach  was  developed by Vitense (1953). Using 
her equations  and  assuming a mixing  length  equal to  the  local  density  scale  height,  we  estimate 

typical  diameter = scale height = 200 km, 

AT < 100O0K, AT is temperature  excess, 

t 2 5  minutes, t is mean  time, 

which are not in  exact  agreement with the  observations but  come  close enough to  provide  some 
support  for  the  convection  hypothesis. 
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If the  bright  granules are convective  elements,  they  should  be  rising, as they are at a higher 
temperature  than  the  surrounding  gas  and  therefore less dense,  presuming  that the two are in  pres- 
sure  equilibrium.  Evidence  indirectly  confirming  this is offered by Evans  and  Michard (1962b),  who 
find that 70 percent of the  bright continuum features  they  observe  are  associated with  violet  shifts 
in  several  weak  spectral  lines.  This  evidence is of marginal value,  however,  because  the  correla- 
tion is low and  because  the  continuum  and  lines  refer  to  different  heights  in  the  photosphere. 

The  granules  observed  near  the  limb of the  disk are higher  in the photosphere  than  those ob- 
served  near  the  center. Whitney  (1963) suggests that limb  granulation may be  evidence of acoustic 
waves  in  the  upper  photosphere. 

Next, consider  the  determinations of upper  photospheric  and  chromospheric  velocity  fields 
made by Evans  and  Michard (1962a, 196213, 1962c)  based on an  extensive  series of observations at 
the  Sacramento  Peak  Observatory.  From  measurements of the Doppler shifts  in a large number of 
spectral  lines-which  extend f a r  in  the  direction of the  spectrograph  slit  and  appear "wiggly" in 
the  photographs-the  authors  derive a r.m.s.  value for what is called  the  "random  turbulent  ve- 
locity"6.  Then  they assume  that  the  stronger  lines  are  formed  farther out in  the  atmosphere, and 
conclude  from  their  observations  that 6 is increasing with  height  over  the  region  where all the 
lines  are  formed. 

To  see  the  relevance of these  observations  for this study,  we must  inquire jus t  how isotropic 
is the  velocity  field5.  Where it is highly isotropic,  there is turbulence  that  can  generate  acoustic 
waves.  Where, on the  other hand, the velocities  are  predominantly  radial and  not  too large,  these ra- 
dial  motions  may  be  quite  consistent  with  the  picture  evolved  in  the  next  section,  where  acoustic 
waves with a net flux vertically  upward  pass  through  an  atmosphere  which,  to a first approxima- 
tion, is in  hydrostatic  equilibrium.  The  evidence of Evans  and  Michard is not conclusive, but it 
does  support  the view that the  velocity  field E is not isotropic.  Center-to-limb  observations of 
each  line  for P 5 0.6 yield  decreasing  values of E .  When we  consider  that 6 is thought to  increase 
with  height, as already  mentioned,  the only explanation,  other  than one based on instrumental- 
seeing  problems, is that  the  horizontal  component of velocity is less  than  the  vertical component. 
The  evidence is weakened by the  authors' belief  that  atmospheric  seeing  effects  may,  in  fact,  pro- 
duce  these  observations  and  thus  render  the  above  conclusion  invalid.  Nevertheless,  these  obser- 
vations  provide  the  best  available  clue  to  the  extent of photospheric-low  chromospheric  turbulence; 
their  evidence is against  isotropic  turbulence  in  this  region.  Table 5 gives  the  results of the  Evans 
and  Michard  study. 

Unfortunately, the  question of turbulence  has not been  settled, as the  work of Holweger  (1967) 
shows. He concludes, after  an  analysis of many  weak  lines,  that  the  horizontal-velocity  component 
exceeds  the  vertical one  and that the  micro-turbulent  velocity E decreases with increasing height 
in  the  photosphere,  contrary  to  Evans  and  Michard. 

An interesting  feature of the  solar  atmosphere,  regarding wave  propagation, is t h e  oscillatory 
vertical  velocity  field  near  the  temperature  minimum.  The  heights  in  the  atmosphere at which these 
oscillations  are  observed are inferred  from  depth-of-formation  estimates of the  spectral  lines 
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Table 5 

Center-to-Limb  Variation of E (km sec- I )  from Evans  and  Michard (1962a). 
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studied.  The  papers by Evans  and  Michard  (1962c),  Leighton, et al. (1962),  and  Noyes and  Leighton 
(1963) a r e  all detailed  studies of this phenomenon. A summary of the  salient  results of both shows 
the following: 1) There is a periodic,  quasisinusoidal  variation of vertical  velocities  in  medium- 
strength  lines with periods  from 200 to 300 seconds that tend  to  decrease with increasing  line 
strength,  i.e.,  with  increasing  height  in the atmosphere. In addition, the r.m.s.  velocity  amplitudes 
increase with line  strength,  i.e.,  with  height.  The  velocity  amplitudes are  always less that 1.0 km 
sec -  l. 2) Further  support  for  the  velocity-field  variations  comes  from  intensity  fluctuations  in  the 
cores  of medium-strength  lines,  with a period  roughly  the  same as for  the  velocity  field  and  decreas- 
ing with increasing  line  strength.  3)  The  observed  oscillations  disappear as one scans  the  disk  from 
center  to  limb,  indicating that the  oscillatory  velocity  field is largely  normal  to  the  solar  surface. 

The next section takes up the theoretical  interpretation of the above  three  types of observa- 
tions;  their  interpretation  in  terms of various  kinds of wave  propagation  will  be  particularly  direct. 
We wish  to relate some of these observations  to  our  previous  considerations on isotropic  turbulence. 
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There is evidence  that  the  non-thermal  velocity  fields  studies by Evans  and  Michard  are  aniso- 
tropic.  Further  observation of oscillatory  Doppler  shifts  and  brightness  fluctuations  in  the  cores 
of medium-strength  lines  led  Evans  and  Michard  (1962~)  to  remark, "A sizable  fraction of the 
kinetic  energy is contained  in  the  distinctly  organized  non-turbulent  motions of many unrelated 
small  elements." What fraction of the  kinetic  energy of the  photospheric  velocity  field is tied up 
in  isotropic  turbulence is still an open  question, but some kind of non-thermal  anisotropic  motion 
does  seem  to be  coupled to  and lying  above the  disk  granulation  That  there might  be more  nearly 
isotropic  turbulence  in  the  deeper  layers of the  photosphere is suggested by the  results of Evans 
and  Michard (1962a)  which show that the 5 derived  from  the  weaker  lines  actually  increases when 
P changes  from 1.00 to about 0.6. Adding the  deduced  oscillatory  velocity  field  to  the  upper  part 
of the  region  gives a picture of the  photosphere-low  chromosphere we refer  to  in  the next section 
in  discussing  the  generation  and  propagation of various wave  modes  through  this  region. 

On a much larger  scale  than  the  granulation is the  recently  discovered  "supergranulation  net- 
work,"  reported by Leighton,  Noyes,  and  Simon  (1962). This is a system of large  cells  easily  seen 
in  the Ca A6103 line.  They are  approximately  circular  near  the  center of the  disk,  have a mean 
diameter of 1.6 x 10  km,  horizontal  motion of matter  from  center  to rim with a mean  velocity of 
0.5 km/sec,  cell  lifetime  in  the  range l o 4  - IO5 sec (difficult to  estimate due to  the  Earth's  rota- 
tion),  and  an  average  spacing  between  cell  centers of 3.0 X l o 4  km,  giving  some  5 x l o 3  cells  over 
the  solar  surface.  A  similarity  in  appearance  was  revealed  between  the  cells  observed  in Ca X6103 
and  the  solar  surface  seen  in  the K ,  central  emission component of the CaII K line. 

The  supergranulation  network  will not play  any direct  role  in  the  calculations of this  report, 
not because it is unimportant, but because its role  and,  hence, its importance  in  the-chromospheric- 
energy-balance  problem is difficult to evaluate.  The  supergranulation  appears  to  be a manifestation 
of convective  motion  that  could  originate  deep  in  the  convection  zone, with material moving essen- 
tially  upward  in  the  center of the  cell  and down along  the  rim.  This  motion  appears  to  be  more 
ordered  than  the  rather  random  motions of the  granulation,  which  exhibits  horizontal as well as 
vertical motions.  Exactly  what  coupling  might exist  between  the two, and  hence what role  the  super- 
granulation  may  play  in  mechanical  energy  generation, is an unsolved  problem.  However,  there is 
one atmospheric phenomenon  with  which the  supergranulation  appears  morphologically  connected: 
the  spicules,  already  mentioned  in  Chapter  I  and  in  the  discussion of the  chromosphere  and  corona. 

Two comprehensive  studies of spicules are those by Athay  (1959), based on data obtained by 
Dunn (1956),  and Beckers (1968). The  reader is referred  to PSC, where  the Athay  study is r e -  
ported  in  context  with  many  other  earlier  studies of spicules.  The  Beckers  article is a review of 
more  recent  work  and  offers a comparison with the  older  studies. Although a fairly consistent 
picture  has  emerged  correlating  high-resolution K spectroheliograms with H a  bright  mottles 
seen at line  center  between *0.2& and  some  information of a statistical  nature  has  appeared  re- 
garding  the  numbers,  rise-times,  etc., of spicules,  their  dynamics  are not understood,  apart  from 
some  qualitative  theories  discussed  in  the  Beckers  review. For this  reason  we shall not discuss 
spicules  any  further  here,  except  to  mention that the  above  correlation between the chromospheric 
network  in K, and H a (presumably  originating  in  spicules  seen on the  disk)  also  correlates with 

28 



the  supergranulation network  and  regions of high chromospheric-magnetic-field  strength.  Even- 
tually a dynamical  theory  will  have  to  correlate all these  observed phenomena, 

We return  to the assumptions of HE and spherical  symmetry  mentioned at the beginning of 
this section. We shall not explicitly use  the HE assumption, but since  we  rely  on  the PSC  model 
t o  start our  calculations  in  this  region,  and  since HE was  assumed  in  constructing  the PSC model, 
we implicitly assume HE. The  evidence  presented  here  suggests that we  need not consider  iso- 
tropic  turbulence  in  the low chromosphere.  However,  oscillatory  motions  do  occur  in  the  vicinity 
of the  temperature  minimum, with  velocity  amplitudes  always less than 1.0 km sec-' . This con- 
trasts with a thermal  velocity  for  hydrogen of the  order of 10 Inn sec - '. On this basis,  we  shall 
ignore  the  pressure  perturbation of the  oscillatory  velocity  and  retain  the  assumption of  HE. 

There  was  some  evidence  in  the  studies  cited that the  velocity  field would lose its "standing 
wave" character  around  the  temperature  minimum  and  move  outward  with  increasing  velocity.  In 
the next section it is argued  that  these  running  waves are  acoustic  waves  in  the  chromosphere. 
This  indicates that to a first  approximation HE applies  to  the  state of the low chromospheric  gas, 
which is perturbed by a progressive sound  wave  that  builds up into a shock wave. 

Spherical  symmetry is also.assumed  for  the  PSC-model low chromosphere.  Barring  signifi- 
cant  penetration of convective  elements  from  the low photosphere  into  the  chromosphere, or sign- 
ificant  penetration of spicules below h = 1300 km (for  which there is no direct,  observational  evi- 
dence),  spherical  symmetry  in  the low chromosphere is probably a reasonable  assumption. On 
the  other hand,  House  (1961)  concludes from a study of emission  in MgI that departures  from 
spherical  symmetry  must  occur  somewhere  between 500 and 1000 km. This  may  be  correct;  the 
effect would be  to  produce  deviations  from  the  PSC-model low chromosphere  we  have  adopted. 
However, in  the  absence of a complete  chromospheric  model  based on possible  deviations  from 
spherical  symmetry,  we shall retain  the PSC model  for 11 5 1300 km,  along with the  implied as- 
sumption of spherical  symmetry. For h 2 1300 km, we do not invoke spherical  symmetry, which 
is quite  invalid  in  the  upper  regions,  except  in'our f i n a l  calculation  for T , ( h ) ,  which must  be  in- 
terpreted as some  suitable  average  temperature  in th i s  region. 

One final idea should  be  mentioned  before we try  to tie the observations of this s.ection  into 
our  mechanical-energy  generation  and  dissipation  model  for  the next. Bhatnagar, Krook, Menzel, 
and  Thomas (1960)  point  ,out that the  large  extension  in  space of many  stellar  atmospheres  can  be 
seen as a momentum  transfer or an  energy  transfer.  These  concepts  can apply  simultaneously. ' 

There could be  momentum  transfer  due  to  the  chromospheric  velocity  fields, which  would  push the 
gas  radially  outward,  and  energy  transfer due to  some effective  dissipation  mechanism,  which 
would cause  extension by producing  higher  temperatures.  Some  coupling  should  exist  between  the 
two. Which process is dominant in  producing the observed  extension of the solar  atmosphere?  The 
authors  give  evidence  for  energy  transfer. A rapid rise of temperature with  height would favor 
energy  transfer,  and go far toward  eliminating  the  need  for  isotropic  turbulence to explain  the  widths 
of many  spectral  lines.  This would also  support  the  picture of anisotropic,  preferentially  radial, 
mass  motions  in  the  chromosphere, as suggested  in this section. 
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F. Generation and Dissipation of  Mechanical Energy 

In the  introductory  statement of the  problem it is stated that several  sources of energy  for 
heating  the  outer  solar  atmosphere  have  been  proposed. We consider  these  sources  in  turn,  and 
finally  select  the  most  probable. First, we  should  estimate  the  total  energy  required  to  balance 
the net radiation  losses  from  the  chromosphere  and  corona. In chapter IV we discuss  the  esti- 
mates that have  been  made  to  date;  that  discussion  indicates  the  need  for a flux of 10' ergs   cm-2 
sec- at the  temperature  inversion.  Practically all the  radiant  energy  loss is due  to  the  chromo- 
sphere alone. 

Hoyle  (1949) was  the first to  calculate how the corona,  but not the chromosphere,  might  be 
heated by accretion of interstellar  particles as the Sun moves  through  the  galaxy.  Billings (1966) 
has reviewed the development of this  idea  to  date;  he  concludes that, for the  corona,  the  accretion- 
heating  hypothesis is weak  though  not entirely dead. He points out that no accretion-heating  theory 
proposed  can  explain  the  very  high-temperature,  low-lying,  yellow-line  regions of the  corona  and 
that no provision  has  yet  been  made  for  the efflux of matter  due  to  solar wind. Considering  these 
difficulties  and t h e  fact that most of the  radiant  energy loss occurs  in  the  chromosphere (a fact not 
considered  in  the  accretion  studies  and of primary  importance  to  us  here), we reject  the  accretion 
hypothesis. 

Cayrel (1963) suggested  the  photospheric  radiation  field as a possible  means of raising  the 
temperature  in  the low chromosphere. He claims  that,  in  an  atmosphere  in  radiative  equilibrium 
which is optically  thin  in  the  continuum  and is subjected  to a strong  radiation  field  (the  photosphere), 
a departure of the continuum source funtion from  the  Planck  Function  can  produce a temperature  in 
the  outer  region  equal  to  the  effective  temperature of the  continuum-producing  region.  Unfortun- 
ately, I shall show in  my  treatment of the H- problem  in  Chapter V that  this  mechanism  will not 
work  in  the low chromosphere. So the  Cayrel  treatment  must  be  modified  to  allow  for  some  me- 
chanical  heating.  The  relevant  photoionization  reaction is 

A s  for  the dominant  collisional  reaction,  Pagel (1959)  showed that  estimates by Dalgarno  (in a 
private  communication  to  Pagel) of the  reaction  rate k = 3.0 x 10" 'cm sec-'  for  the  associative 
detachment  reaction 

would cause  reaction 52 to  dominate  the  ionization  equilibrium of H-  in  the  solar  atmosphere out 
to T~~~~ 2 0.002. More  recent  theoretical  calculations  (Dalgarno,  1967)  and  laboratory  measure- 
ments (Schmeltekopf et al., 1967) of the  rate constant k for  reaction 52 give k = 1.3 - 1.9 X io- '  cm 
set" for a temperature  range of 300 - 8000°K. Thus,  Pagel's  conclusion  remains  valid.  That is, 
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IF .. . 

!' d I the  reaction 52 now predominates out to T~~~~ = 0.0003. Table 1 shows that the collisional  reaction 
,. ; predominates out to about 200 km. Beyond 200 km, photoionization  may  predominate.  In  Chapter 
; IV we  shall  consider  the  role of collisions  and  photoionization  in  fixing the temperature. : i  

Solar  activity  can  be  ruled out for  many  reasons,  the  most obvious  being that  conditions  in  the 
steady-state  chromosphere (as here defined) are  essentially independent of time on the solar  cycle, 
whereas  solar  activity is strongly  dependent  on this time. 

We have  mentioned that spicules  seem  an  unlikely  cause of coronal  heating,  because of their 
subsonic  speeds  and low temperatures. Yet  they  might  play a role  in heating  the  upper  chromo- 
sphere.  From PSC or  the  Beckers' (1968) study it appears that 30 km sec-' is a typical  spicule 
velocity.  Following Thomas (1948a), we  note that this velocity  exceeds the adiabatic  speed of sound 
for all temperatures below 50,000°K, depending on the ratio of specific heats y which  we use  to  cal- 
culate Te from  the  adiabatic sound  speed  formula cs = (yRTeL) 1'2 , where R = 8.31 X 10'   ergs "K - l 
mole-' is the  gas  constant  and p is the  mean  molecular  weight  and  using c s  = 30  km sec - l .  Thus, 
even if  spicules are not found below h = 1300 km,  they  may  play a role  in  heating  the  upper  chro- 
mosphere by the  mechanism of shock  dissipation.  Also,  we  must  remember  that  spicules  may 
originate at some  height below h = 1300  km. 

If the  spicules  are  supersonic  jets,  heating the ambient  chromospheric  gas through  shock dis- 
sipation,  then  the  problem  lends  itself  to a shock-wave treatment, which  will  be  developed  pre- 
sently.  Since  the  origin  and  dynamics of spicules  are not yet  well  understood,  we shall treat  the 
problem no further  from this viewpoint,  but merely  keep  in  mind  that  spicules  may play some  role 
at least  in  upper  chromospheric heating.  A  qualitative  theory of spicule  formation  has  been  devel- 
oped by Kuperus  and Athay  (1967), in which thermal conduction  downward  through the  chromosphere- 
corona  transition  region is the  source of energy that generates  the  spicules. Only a detailed  study 
can  settle th i s  question. 

We must look for  mechanical  sources  lying  in or beneath  the  photosphere.  This  source  must 
satisfy two conditions: 1) Enough energy  must  be  provided  to  balance  the  net  radiation  losses of 
the  outer  atmosphere,  already mentioned. 2) We must show how this  energy is generated,  pro- 
pagated,  and  dissipated. 

We tentatively  identify  the  energy  source  with  the  turbulent  motions of the  gas at the  top of the 
convection zone. That  some kind of turbulent  motion are present is supported by observations of 
granules  and by theoretical  considerations; both  should  reveal  something as to  where  these  motions 
occur  and as to  their  nature,  isotropic  or  anisotropic. 

Unfortunately,  continuum  observations  have s o  f a r  not been  analyzed to  determine a 
"random  turbulent  velocity",  because  resolution has not been  sufficient,  even  in the Project  Stra- 
toscope  work  discussed  in  the  previous  section.  Thus,  in the region  where disk granulation is ob- 
served at 300 - 400 km below the h = 0 surface,  many  current  estimates of the  energy  generated 
are based on the assumption  that  an  isotropic  turbulent  velocity  field is present, when this has not 
been  established  empirically. On the other hand, inferences of a random  turbulent  velocity,  made 
from  studies of weak  spectral  lines,  invariably refer to  higher regions of the  photosphere (which 
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may  be  important  for  mechanical-energy  generation  and which  we shall  discuss later). At present 
the  center of interest lies in  the  deeper  region;  thus  we are seeking  evidence of random  turbulent 
velocity  at  levels  where h 2 -350 km. 

Empirically, only vertical  velocities  have  been  inferred  for  this  region.  (This  type of observa- 
tion is discussed  in  Section E.) We assume  that  there is some kind of turbulence  here  because of 
the  locally high  "Rayleigh  number" (a dimensionless  parameter defined  below).  Following  Unsold 
(1955) and  Schwarzschild (1959), we  note  from  laboratory  experiments  that  the  Rayleigh  number has 
a critical  value  10 below  which, in  the  range of values l o 3  - 10 5, convective  motion in  the  form of 
laminar flow in  stationary,  vertical, hexagonally cross-sectioned  Bknard  cells  occurs  and above 
which some  form of non-stationary  convection  occurs.  The  Rayleigh  number  Ra is defined by 

Ra 

where 4 is the  density  scale height across which the  density  decreases by a factor of e ,  2 is the 
kinematic  viscosity  coefficient, k is the  radiative conductivity,  and A(m) is the  excess of the  tem- 
perature  gradient  over  the  adiabatic  gradient.  The  other  symbols have their  usual meaning.  Using 
the  same  values  for  these  parameters as Schwarzschild  (1959),  which a r e  

T = 8200"K, 8 = 300 km , 

k = 2 x 1 0 l 2  c m 2  s ec - l ,  u = 2 x IO3 c m 2  sec-' , 

Y -  1 1 A(DT) = 4000 km" , 

which  gives Ra lo'. Thus  stationary,  laminar convection is ruled out. On the  other  hand, as 
Schwarzschild  points out, solar  granulation  does not seem  to  be a structureless,  entirely  random 
(i.e.,, isotropic) phenomenon. He considers this inconsistent  with  the  very high value of Ra 2 IO', 
which implies a .completely  random  turbulent motion.  Arguing that one should  use  "turbulent  vis- 
cosity"  in  place of kinematic  viscosity  in  Equation 51, he  reevaluates Ra, only to find a new value 
too low for  any  convective  motion at  all, much less  non-stationary convection. He concludes  that 
the  true Rayleigh  number  should lie  slightly  above l o 5 ,  because  kinematic  viscosity  should  be  used 
in Equation  51  and the "Reynolds  number" (see below) has a high value  appropriate  to  turbulent flow. 
He adds  that  the  turbulence is probably not random, on the  grounds that such  turbulence would r e -  
quire  using  turbulent  viscosity  in Equation 51, which leads  to a ridiculously low value of Ra. His 
final  conclusion  provides a consistent  picture  both  from  observational data and from  arguments 
based on the Rayleigh  number. 
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Although some  anisotropy is highly  probable,  we  shall  assume  here  that  these  motions  in  the 
lower  region of h rr -350 km are isotropic. 

Further  evidence  for  highly  turbulent  motions is provided by estimating  values  for  the Reynolds 
number  in this region.  The  Reynolds  number is defined  by 

Re - - - P C  v (53 1 

where C is a characteristic length  (taken to  be  the  order of the  density  scale height as in  Equation 
51), v is flow velocity, p is dynamic  viscosity  (related  to  kinematic  viscosity by = d p ) ,  and P 

the   mass  density.  Minnaert (1953) suggested  the following values  for  these  parameters at the  top 
of the  convection  zone: 

4 = lo3 km , v = i o 5  cm sec" , 

which  differ  somewhat  from the values  in  Equation 52 but not enough to  affect  the  conclusion below, 
based on a Reynolds  number Re = 10 ', which  follows  from  Equations 53 and 54. Minnaert's con- 
clusion is that  such a high Reynolds  number  ensures  turbulence at the  top of the convection  zone, 
because  laboratory  experiments show that transition  from  laminar  to  turbulent flow occur when 
Re 2 IO3. On this basis, we assume  that a highly turbulent flow exists  at  the  top of the convection 
zone. 

Before  reviewing  the  theory of acoustic-energy  generation by th i s  turbulence,  let  us  reconsider 
some  previous  statements. First, the  choice of the  characteristic length 4 in  Equations 51 and 53 
is somewhat  arbitrary. In the original  laboratory  experiments  where  these two numbers Ra and Re 
were  used, C referred  to  the  thickness of the  fluid  layer  and  the  radius of a pipe  through which the 
fluid  was flowing, respectively (Huang and  Struve, 1960). Since  the  element's  (granule's)  size,  the 
distance  (Prandtl  mixing  length)  through  which a typical  element  moves  before  losing its identity, 
and  the  density  scale  height at the  top of the convection  zone are all of the  same  order of magnitude 
in  the  range lo2 - 10 k m ,  according  to  theories of this  region  already  considered  (Vitense, 1953 ; 
Bohm-Vitense, 1958; Biermann, 1959), it is felt that a choice  for C i n  this range is the  best  we  can 
make; but there is some  uncertainty. 

Consider  the  Lighthill (1952) theory  for  acoustic-power  generation  applied  to  an  isotropic, ho- 
mogeneous,  turbulent  velocity  field. It is assumed that all the  acoustic  energy  produced will  be 
radiated away with no feedback  into the turbulent  velocity  field; this is justified as long as the Mach 
number  for  the  turbulent  motions is much less  than unity. Theoretical  estimates of turbulent  ve- 
locities (Bdhm, 1963), based on convection  theories  which are admittedly  rough  approximations  and 
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treat vertical  velocity  components only, give  maximum  values of about 2.0 km sec-'.  This  value 
is sufficiently small  compared  to  the  local  velocity of sound in  the low photosphere  for  Lighthill's 
assumption  on  the  turbulent  Mach  number  to  be  valid  in  this  region. 

Lighthill starts with the  basic  equations of continuity  and  motion of fluid  dynamics  (Courant  and 
Friedrichs, 1948),  and derives  an  expression  for  density  perturbation  in a turbulent  fluid as a func- 
tion of the  stresses  associated with the  turbulent  velocity  field.  This  expression  for  density  per- 
turbation  has  the  form 

where DI and Qu represent  dipole  and  quadrupole  acoustic  radiation  fields,  respectively,  because of 
their  formal  similarity  to  the  dipole  and  quadrupole  integrals  in  the  expansion of the  electromagnetic 
potential; P, is the equilibrium  density of the  gas at point r. The  intensity of sound is 

where ( ( p ( r ,  t )  - po)2)is the  mean-square  fluctuation  in P and  the  other  symbols  have  been  de- 
fined  already.  The  total  power output is obtained by integrating  the  intensity  over a large  sphere 
of radius (11 , which encloses  the  region of sound  generation.  Dividing by the volume of the  sphere 
gives  the  mean power  density. 

Proudman (1952) performed  the  integration of the  quadrupole  term obtained by combining  Equa- 
tions 55 and 56 for the case of isotropic, homogeneous  turbulence.  Lighthill  evaluated  the  dipole 
term.  Kuperus (1965) compares  the  results of the  two  integrations  and  shows  that 

where P, and P q  are   the  power densities for dipole  and  quadrupole  acoustic  radiation,  respectively, 
M, = vt/cS is the Mach number  for  turbulent  motions  with v t  the  velocity of turbulence,  and +is a 
number,  evaluated by Kuperus,  weakly  dependent  on  the  assumption  concerning  the  correlation  func- 
tion f ( r  1, given by 
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1 Here, v i  is the  velocity  component  in  the  i-th  co-ordinate  direction,  and (v~(L~) . ~ ~ ( 1 ~ ) )  is the 
mean  value of v i  (rl) . vi(12) subject  to  the  condition r = Ir, - r ,  1 . Specific  forms  for  Equation 

uses  Proudman's  work  to show that a difference by a factor of only 2.86 exists  in the choice of 4 ,  
I 58 are available  for the Heisenberg  correlation  and  the  Gaussian  correlation of velocities.  Kuperus 

4 depending  on  whether we choose  the  Heisenberg  or  Gaussian  correlation; he claims  that  experimen- 
tal evidence  favors  the  Heisenberg.  Evaluating 4 with the Heisenberg  correlation  function  for f (  r )  , 
Kuperus  concludes  that P, 2 0.18 Pq for M, = 0.15, making  the  quadrupole  term dominant. We ten- 
tatively  accept  this  conclusion  with  one  reservation:  the  assumptions of isotropic  turbulence  and a 
Heisenberg  velocity  correlation have not been  verified  to  date  for  the  lower  photosphere. Unno and 
Kat0 (1963) have also evaluated the t e rms  of Equation 56, using  the  Lighthill  theory  with  some  mod- 
ifications.  They  note  the  sensitivity of the  results  to  these  unverified  assumptions, including the 
possibility  that  sufficient  anisotropy  in  the  turbulent-velocity  field  might  cause the dipole te rm  to  
be as important as the  quadrupole  term (Unno, 1964). 

Lighthill (1954) supplemented the above  calculations by deriving a more  general  form of Equa- 
tion 55  which includes  the  effect of anisotropic convection  (this,  presumably,  "drives"  the  turbulent 
motions by agitating  the  gas at the  top of the  convection  zone) on the  total power  radiated. He shows 
that the  effect on the  quadrupole  radiation  field is to multiply  the Qu term of Equation  55 by the  fac- 
(1 - Mc C O S  6 )-3, where M c  = vC/cs  is the Mach number  for  convective  motions  with v ,  the  convective 
velocity,  and 6 is the  angle  between v c  and  the  direction of sound  emission.  The  intensity  due  to 
quadrupole  emission  must  then  be  multiplied by (1 - M, cos S ) - 6 .  This  correction is not included 
in  the total  mechanical flux estimate  we  give  below,  because  turbulent  velocities are assumed  equal 
to convective  velocities as a first approximation. A more  detailed  study  should  distinguish  between 
the two  and  include  the  effect of the  convective  motion  with a preferred  direction.  The  effect of con- 
vective  elements that penetrate beyond  (above) the  radiatively  unstable  lower  photosphere will  be 
discussed  later  in  this  section. 

Now we  can  consider  some  estimates of the net  flux of mechanical  energy  generated by the 
Lighthill  (1952)  mechanism  in  the  turbulent,  radiatively  unstable  lower  region of the  photosphere. 
The  effect of magnetic  fields is ignored.  The  formula  Proudman  obtains  for the acoustic power 
generated  per  unit  volume by the QU term of Equation 55 is 

where c is a number  dependent upon our choice  for  the  velocity  correlation f(l) of Equation 58, 
is a characteristic length of the  turbulent-velocity  field,  and the other  parameters have already 
been  defined.  The  variation  in C is only a factor of 2.86 (as with 4 of Equation 57),  depending on 
whether  we  choose the Heisenberg or Gaussian  correlation. Again  we  choose the  Heisenberg  cor- 
relation and, like  Proudman,  obtain C = 37.7. 
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Kuperus (1965) numerically  solves  Equation 59 for  two  different  models of the  convection  zone, 
t o  obtain a rough estimate of the  mechanical-energy  flux  generated. We use  his  estimates here. He 
chooses L = 500 km, which is reasonable  in  the light of our  arguments  for  choosing a characteristic 
length4  to  evaluate  the  Rayleigh  and  Reynolds  numbers.  Thus  Equation 59 becomes 

pq = 7.55 X 10" p 0 ( " : ) 3 / 2  ~ , 5  , 

where p ,  and V, are obtained  directly  from  the  convection  zone  models,  and M ,  = vt/cs = . , / d m  
is calculated  from  these  models, which specify Te, I-L , and Y. The  models  chosen by Kuperus  to  cal- 
culate Pq are  theoretical  ones  calculated by Biermann et al. (1959) and  Heintze  et al. (1964). The 
Biermann  model is practically  identical with the  Vitense (1953) model,  mentioned  in  the  last  section 
to  establish  similarities between  observed  granules  and  calculated  properties of convective ele- 
ments.  The  Heintze (1964) model is called  the  "Utrecht  Reference  Photosphere"  and is similar  to 
the  Heintze (1965) model,  for  which  the  temperature  distribution is plotted  in  Figure 2. Isotropic- 
turbulence  velocity V, is assumed  equal  convective  velocity v c  as a first approximation. 

Kuperus  assumes that all acoustic  power  generated  will  ultimately  propagate  upward  from  the 
convection zone. Since half of the  power  initially  generated  will  propagate  downward,  according  to 
the  early  Lighthill (1952) theory, a reflection is needed to change the  direction of those  waves  that 
initially  propagate downward. Kuperus  does  not  consider  what  fraction of these downward  propagat- 
ing  waves  will "bounce off" the  denser  material below and  propagate  upward  before  appreciable at- 
tenuation. This  omission is probably  allowable  because 1) some  reflection  can  be  expected, 2) the 
already  mentioned  correction  factor (1 - Mc cos S ) " j  shows us  that   more sound  will  be initially 
emitted  upward  than  downward  for a convective  velocity v c  directed  predominately  upward,  and 
3 )  the  maximum  uncertainty of a factor of 2 implicit  in  this  assumption is no greater  than  the un- 
certainties upon which the  convection  zone  models  or  Equation 60 for  the power  generation a r e  
based. 

The  calculation of the  mechanical  energy  flux Fm is reduced  to  an  integration of the  acoustic 
power output per  unit  volume  over  the  thickness of the  generating  region.  Thus,  Kuperus  numer- 
ically  solves 

where Pq(h) is obtained  from  Equation  60,  and h ,  and h 2  are  derived  from  the  convection  zone  model 
chosen.  The  lower  boundary, h ,  , occurs  where  the  decrease of M, (due to v t  decreasing  and cs in- 
creasing  inward)  makes P q ( h )  negligible.  The  upper  boundary, h , ,  occurs  where  radiative  equili- 
brium is reestablished  in the photosphere as one proceeds outward.  The  region of appreciable 
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i'! 1 ii acoustic-power  generation is a-thin layer  about  100 km thick as shown  by a simple  estimate  based 
on  either  model  Kuperus  used-for  the  upper  convection zone. 

i 
i 

$ The  results of Kuperus'  calculation of the flux Fm , obtained  from  Equation 61, are as follows: 
Fm = 2.9 X lo8  ergs  cm- 2 sec- 1 from  the  Biermann  model of the  convection  zone; Fm = 5 X i o 7  and 
2.7 X 10' ergs  cm-' sec-l from  Heintze  model,  depending  on  whether  upward  or downward  convec- 
tive  velocities are used, as the  Heintze  model is an inhomogeneous  model  with  columns of both 
rising  and  falling  material,  Kuperus  simplifies  the  calculation by selecting a mean  temperature 
-6250" for  evaluating Fm. Since T, does not vary  strongly  within  the  100-km  layer where the  energy 
is generated, this simplification is justified. 

These  three  estimates of Fm are all equal to or greater  thanthe  various  estimates of the  net  radi- 
ative loss from  the  outer  atmosphere,  given  in  Chapter IV. Although there are many  uncertainties 
in  the  estimates of both  quantities,  we  conclude  that there is probably enough mechanical  energy 
generated by the  Lighthill (1952) mechanism  to  balance  the  net  radiative  losses of the  outer 
atmosphere. 

That  magnetic  fields  in  the low photosphere  probably  do not affect  the  above  results,  we  see 
from  the  following  considerations.  Kulsrud (1955) evaluated  the  quadrupole  term of Equation 55 
for  the  more  general   case with a magnetic  field.  The  generated  power is enhanced by the  turbu- 
lence  components of the  magnetic field.. This  enhancement is exhibited as a function of the Cowling 
number S, defined here as the  ratio of the  turbulent  magnetic-energy  density  to  the  turbulentkinetic- 
energy  density. We have 

where S t  is the  turbulent Cowling number  and H ,  is the  turbulent  magnetic-field  strength. For 
S t  5 0.1, Kulsrud  shows  that the magnetic  field  plays a negligible  role. We do  not know the value 
of H, , but if  we  assume that it is of the  same  order as the  steady-state,  photospheric  magnetic- 
field  strength of about 1 gauss (Babcock  and  Babcock,  1955),  we can  estimate s,. Suppose  we as- 
sume,  for  the low photosphere, 

V ,  = 1 krn sec-' , H ,  1 g a u s s ,  

This  gives s t  2 l o m 4  << 0.1, well  within the limit  for  neglecting the magnetic  field  in  the  quadrupole 
term of Equation 55. Following the  method of Kulsrud,  Osterbrock (1961) evaluated  the  effect of a 
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steady-state  magnetic  field on the  dipole  term of Equation 55. He shows  that  H 1: 10 gauss is re- 
quired  before  the  corrected  dipole  term  will  complete  in  magnitude  with  the  quadrupole  radiation 
term of Equation 60. Thus,  ignoring  the  effect of magnetic  fields  on  energy  generation is justified 
outside  active  regions. It is probably not justified  in  the  plage  regions,  but,  since  they are solar- 
cycle dependent  and  cover a small  fraction of the  photosphere,  we  do not consider  them  here. 

This  completes  our  review of possible  sources of mechanical  energy  for  heating the outer  solar 
atmosphere,  except  for a discussion  to follow  on the not yet  well  understood  effects of penetrative 
convection. We conclude that acoustic  waves  generated by a turbulent-velocity  field  in the low pho- 
tosphere  provide  the  most  likely  source  in view of current  observational  data  and  theoretical  models 
of the  photosphere  and  the  underlying  convection zone. Now it is necessary  to  consider how these 
waves  propagate. 

The  term  "acoustic" has so far been  used  to  describe  the  waves  generated.  "Pressure"  waves 
(generated  in  the  presence of a gravitational  and a magnetic  field) would be as valid. The  resulting 
energy flux  obtained  from  the  Lighthill  theory,  when  generalized by Kulsrud  for  magnetic-field  ef- 
fects, is seen  to  be  almost independent of gravity  and  magnetic  fields  in  the low photosphere.  Grav- 
i ty  independence is due  to  the  fact that only the  weaker  dipole  term of Equation 55 is gravity- 
dependent. We have  already  advanced  arguments  for  magnetic-field  independence.  The  important 
point is that  even though the  generation of these  pressure  waves is practically independent of solar 
surface  gravity  and  the  photospheric  magnetic  field,  the  same  might not be  true of wave  propaga- 
tion. Therefore, we must  examine  the  problem of the  propagation of an  infinitesimal  disturbance 
through a compressible  plasma with gravity  and a magnetic  field. 

This  problem  has been  studied by Ferraro and  Plumpton (1958) for  an  isothermal  atmosphere of 
infinite  electrical  conductivity. If we further  assume  zero  viscosity  for  the  solar  atmosphere, and 
orient  our  co-ordinate  system so that -a vector  terminating  at (0, 0, -g)-lies along  the z-axis, we 
can start with  the basic  equations of magnetohydrodynamics  (the  so-calledNavier-Stokes  equations 
with a magnetic-force  term) and the  adiabatic law and,  following Ferraro and  Plumpton,  derive  the 
wave  equation  governing  the  displacement I of a particle  from its equilibrium  position.  The  equation 
is 

d 2 F  - 

d t 2  
" 

.. " 1 [io (H, . G ) G .  ; + ( io 6) (io x ? X  ;)] , (64) 
477P, 

where all the old symbols  have  their  usual  meanings,  the  subscript "0" refers  to  the  equilibrium 
value of the  quantity, ca  = H , / m i s  the  Alfv6n  speed,  and r z  is the z-component of ?'. 
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Equation 64 is rather  complicated,  but by assuming  plane  wave  solutions of the  form 

and  substituting  these  solutions  in  Equation 64, we  obtain  the  dispersion  relation  for  the  dependence 
of angular  frequency w on wave  numbers kx, ky, kZ , and on physical  conditions in  the atmosphere 
through g ,  c B  , and ca. From this dispersion  relation  we  can  determine  what  wave  modes are likely 
in  the photosphere  and low chromosphere.  The  dispersion  relation is itself quite  complicated,  but 
if  we assume Go = (0, 0, Ho) for a vertical  magnetic  field  and  let ky = 0 for  two-dimensional  pro- 
pagation,  we  still  obtain all the physical  behavior of the  more  general  case with simpler  mathe- 
matical  expressions.  Consider  the  following  special  cases. 

Case 1 is one-dimensional  propagation,  obtained if  k x  = 0. The  dispersion  relation  then  be- 
comes  either  Equation 66 or 67: 

Here,  our  phase  velocity vp  = w/kZ = c a  = H o/m is the Alfvbn speed.  The  wave is a transverse 
wave  travelling  vertically  along the magnetic  field.  Also  possible is 

w2 - c,' k,' - y g k ,  i = 0 ,  

This is a  sound  wave  travelling  vertically.  Solving  Equation 67 for kz, 

Case l b  

Only for w us will the wave  number k z  have a real part.  Thus, only for > us will  propagation 
of a pure sound  wave  be  possible. We shall return  to this point later. 

Case 2 occurs if kx 7 0, but g = 0. In this case, we  neglect  gravity,  but  include  magnetic- 
field  effects.  The  dispersion  relation  becomes 
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which  describes  magnetohydrodynamic  waves  in  an  isothermal  compressible  plasma of infinite 
electrical conductivity. If the first factor  in  Equation 69 is zero,  case la occurs. If the  second 
factor is zero, two new types of independent modes  occur.  These are called the "fast". and  the 
"slow"  mode,  depending on the choice of the f sign  in the equation  for  the  phase  velocity,  which is 

4c; c ;  cos  @I 1'2 

where 0 is the  angle  between  the  wave  vector  and  the z - a x i s .  

Case 3 occurs i f  we put c a  0, thus  neglecting  the  magnetic  field,  but put g # 0. The  disper- 
sion  relation  becomes 

(w2 - 

Equation  71  yields  real k z  only where 0 > us or w < wg , assuming  that up > wg , which is true  in  the 
photosphere. If (1: < w the  waves  are  called  "gravity  waves." 

g' 

We are now ready  to  discuss wave  propagation  in  the  photosphere  and low chromosphere  in 
t e r m s  of the above. Osterbrock (1961)  took Equation 69 and  showed that, in  both the  photosphere 
and  the  low-chromosphere  outside  regions of strong  magnetic  fields  associated  with  plages,  the 
fast mode is practically a sound  mode, in  that c,' >> c:, which makes the second  factor  in  Equation 
69 reduce  to  the g = 0 form of Equation 67 for a pure sound  wave. This is evident i f  we  note that 
c: >> c: is equivalent  to rme/p >> H2/47ip. From  Table 1, we see that the  place  in  the low chromo- 
sphere  where  this  condition is least  likely  to  be  met is the  higher  part, owing to  the  rapid  decrease 
in  density  with height. Testing  the  above  condition at h = 1250 k m ,  with P "- 1.5 X 10- "gm cm- 3 

and Te 2 7500"K, and  assuming H = 1 gauss and Y = 5/3, we  obtain c:/c: 2 0.05. Thus  Osterbrock's 
contention  about  the fast mode is surely  correct below this height. 

Equation 70 with the  minus  sign  shows  us  that,  for cs2  >> c:, v p  - c a )  so the slow  mode is prac- 
tically  an Alfv4n mode. We shall  review  arguments  for  the  rapid  damping of the Alfvhn mode  in  the 
photosphere  presently  when  we  come  to  study  dissipation  mechanisms.  Here,  we  use the resul t  due 
to  Osterbrock's  discovery that the Alfvhn mode is so rapidly  damped  in  the  photosphere that effec- 
tively no flux of mechanical  energy  passes  through  the  photosphere  in  the  form of Alfvhn waves. 
From  this  we conclude  that  the  entire flux of energy  through  the  photosphere is in  the  fast  mode or, 
in  effect,  sound  waves,  provided  that  the  effect of gravity is negligible. 

Whitaker (1963) argues that the  effect of gravity  cannot  be  ignored.  Accepting  Osterbrock's 
conclusion that the  magnetic-field  influence is negligible  over  most of the  solar  surface, he argues 
in  favor of gravity  waves with the  dispersion  relation given by Equation 71. Since  sound  waves of 
angular  frequency u < as cannot  propagate  outward but are  reflected  back down into  the  photosphere 
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at the  temperature  minimum  where us attains a maximum  value,  Whitaker argues that some of the 
energy  in sound waves  cannot  propagate  into  the  chromosphere,  where  the  energy is needed. To 
show that this is a serious  problem, let us  evaluate us for  conditions  around  the  minimum  tempera- 
ture. Using 

g = 2.74 x i o 4  cm sec-' , T, = 4600°K , 

(72) 

y = 1 . 2  , /1. = 1 ,  

after Whitaker  (whose Y lies between  the  adiabatic  and  isothermal  values)  the  second  Equation 68 
gives us = 0.0243 sec-' . This us corresponds  to a critical  period of Ts = 259 sec. We saw  in 
Section E that a characteristic  period  for the observed  photospheric  oscillatory  velocity  field is 
300  seconds. We also saw  that a typical  granule  lifetime lay at  or  slightly  above  this  value. AS- 
suming that these  times typify  the  periods of sound  waves  in  the  photosphere  (since  we  lack  theo- 
retical  calculations of the  frequency  spectrum of the  acoustic  waves  generated by turbulence), we 
see  that much of the  energy  in  the sound  mode  may not be able to  pass through  the  temperature- 
minimum  barrier.  Thus, we must  inquire anew whether  sound  waves  with  dispersion  relation  given 
by  Equation 67 with g # 0 a r e  still the most  likely  mode  for  transmitting  energy  to  the  chromo- 
sphere,  or  whether  the  gravity  mode  may do this  more efficiently. 

The  gravity  mode  favored by Whitaker  and  described by the  dispersion  relation (Equation  71) 
also  encounters  difficulties.  These  two-dimensional  waves  cannot  propagate  outward when w w g ,  

where w g  is given by Equation 71. If we  evaluate w g  for  the  same  conditions (given by 72) for which 
we  evaluated u s ,  we  find  that w g  = 0.0181 sec-l,  corresponding  to a critical  period  for  gravity 
waves of Tg = 348 sec.  This  value  lies above the  characteristic  period of 300  seconds which seems 
to dominate  oscillatory  processes  in  the  photosphere.  Thus  there  can  be no vertically  propagating 
gravity  waves of T 2 300 sec;  the  same type of argument  used  to  question  the  efficiency of sound- 
wave  transmission  through the photosphere  can  be  applied  to  gravity  waves.  In one respect,  the 
situation is more  severe  for  gravity  waves.  Whereas  the  temperature  minimum,  where w s  and wg 
a r e  evaluated,  offers  the  greatest  resistance  to sound-wave  propagation, it offers  the  least  resist- 
ance  to  gravity-wave  propagation, i f  we  hold Y and g constant  and  consider  the  dependence of w g  on 
T, . Thus,  the  critical  frequency w g  above  which  gravity  waves  cannot  propagate  becomes  lower on 
either  side of the  temperature  minimum, excluding a broader  range of frequencies  and  raising  the 
question  whether  an  appreciable f l u x  of gravity  waves  generated  in  the low photosphere could reach 
the  temperature  minimum. 

The  fact  that ws > ug raises a further  problem. For us  = 0.0243 sec"  and ug = 0.0181 sec-', 
the  corresponding  periods are T, = 259 sec  and Tg = 348 sec. Thus,  periods  between Tg and Ts 
define a range of non-outwardly  propagating  disturbances.  Yet this is the  very  range of periods 
that dominate  oscillatory  processes  in the photosphere. What, then, a r e  the actual  facts about this 
range? Moore  and  Spiegel (1964) suggest that these  photospheric  velocity-field  oscillations are a 
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direct  manifestation of non-propagating,  standing  waves  in the region of the  temperature  minimum. 
They  further  suggest  that  convective  elements,  penetrating  above  the  upper  boundary of the radi- 
atively  unstable  region  to  the h = 0 region,  may  be  able  to  generate  these  oscillations. Such pene- 
trative  convection is to  be  expected  (Moore  1967)  from  the  presence of an  inertial   term  in  the equa- 
tion of motion,  which the  mixing-length  theory  used  for  our  convective  zone  models  ignores, 

Lighthill (1967) argues that one  would expect  this  penetrative  convection  to  generate  gravity 
waves  in  the  upper  photosphere,  assuming that these  motions  can  be  represented as a highly ani- 
sotropic,  turbulent-velocity  field.  Indeed,  he  estimates  that  gravity-wave  generation  in the upper 
photosphere  should  be so efficient as to  produce as much  energy  in  gravity  waves as the  isotropic 
turbulence  mechanism  produces  in  acoustic  waves  in  the low photosphere.  However,  he  does not 
say what fraction of this  energy flux  can  propagate  through  the  temperature-minimum  region.  Thus, 
these  gravity  waves  may  be  standing  waves:  then,  Lighthill's  suggestion  recalls  that of Moore  and 
Spiegel. 

Uchida  (1967) solved an eigenvalue  problem  to  determine what  waves  can  be  trapped  in a r e -  
sonant  cavity  consisting of the temperature "trough"  region  around  the  minimum  temperature  and 
bounded on the  sides by the "walls" of the  supergranulation  elements, which are  reinforced by 
strong  magnetic  fields  around  the  rim. He  concludes that a standing-gravity-wave  oscillation  will 
result  in a horizontal  wavelength of 2000 - 3000 km  and a period of about 300 sec.  This  conforms 
surprisingly  well with observations of the  oscillatory  velocity  field  described  in  the last section. 

On the  evidence  presented so far, the  general  features of gravity  waves  and  oscillatory  veloc- 
ity  fields  in  the  solar  atmosphere  might  seem  to  be  understood,  suggesting  more  precise  ques- 
tions  such as: 

1) What fraction of the  mechanical  energy  generated by the  convection  zone  goes  into  the  grav- 
i ty  modes? 

2) What fraction of this  energy is available  in  propagating  frequencies  to  heat  the  chromosphere? 

Unfortunately,  the  picture  may not be so simple.  Souffrin  (1966)  studied  the  general  problem of 
the  response of an  atmosphere  to  an  underlying  turbulent  convection zone. He introduces  radiative 
dissipation  and  describes  the  response of an  isothermal  atmosphere as a function of distance  from 
the  convection  zone.  For  the  solar  photosphere, he concludes that gravity  waves  are  unlikely, as 
the  radiative  relaxation  time of this  region is too  short. 

It is clear that t h e  related  problems of penetrative  convection,  gravity  waves,  and  oscillatory 
velocity  fields  have  not  yet  been  solved. So we shall  not  consider what role  gravity  waves  might 
play  in  heating  the  chromosphere, as i t  is still not certain  that  there is a flux of gravity  waves  into 
the  chromosphere. 

In spite of the uncertainty as to how much  energy  will  pass  through  the  temperature  minimum 
in sound  waves,  they  seem  the  most  likely  agent  for  carrying  energy  from  the  convection  zone  to 
the  outer  atmosphere. Now we  must  find a means  for  the  dissipation of this  energy. 



i As already  stated, Alfvkn waves are so rapidly  damped  in  the  photosphere  that  they  become 
/ I /  negligible. Osterbrock (1961) defines a damping  length 5 as the distance  in which the  energy flux 

drops by a factor e .  For  the  damping of Alfvdn waves  due  to 
i ity,  he  uses a damping  length 5 from  van  de  Hulst (1951), 

electrical conductivity  and  viscos- 

(73 1 

where v is the  wave  frequency, CJ the  electrical conductivity,  and P the kinematic  viscosity.  For 
"frictional"  damping  due to  collisions  between  positive  ions  and  neutral  atoms,  he  uses a damping 
length 5, , from Piddington (19561, 

where v is the wave  frequency, 7) the  ratio of the  mass  density of neutral  atoms  to  the  mass  density 
of ions,  and 7 the  mean  collision  time  for  an  atom  to  lose its momentum  in  collisions with ions.  The 
net  damping  length 5 ,  for Alfvkn waves is given by 

" -  1 + -  1 
5 0  - 5 1  5 2  

(7 5) 

Osterbrock  obtains  the  electrical conductivity for  electron  collisions with  positive  ions  from  Spitzer 
(1956) and  for  electron  collisions with neutral  atoms (of importance  in  the  photosphere)  from his 
own previous  work  (Osterbrock, 1952). He uses Edmonds' (1957) table of viscosity  coefficients, 
extrapolated  from  the  convection  zone  through the upper  photosphere  and low chromosphere, as- 
sumes  H = 2 gauss  outside  plage  regions,  combines  this  with p from  Minneart's (1953) model pho- 
tosphere  and the van de  Hulst (1953) model  chromosphere  to  obtain c ,  = H / e ,  and  takes = 1.2 
X sec" for the wave  frequency. He finds  that 5 ,  << 5 ,  in  the photosphere  and low chromo- 
sphere  and  that 5 ,  2 1.0 km in  this region.  For  reasons  already given,  we  cannot accept the van 
de  Hulst  model  chromosphere;  however,  the  damping  length 5, 2 5,  is so small that Alfv6n waves 
can  certainly  be  ignored  in  the  photosphere,  where  wave  generation  occurs.  In  the  chromosphere, 
the fast-mode  hydromagnetic  wave (which is essentially a sound  wave  outside active  regions)  will 
be the only survivor  among  the  modes  generated  in the photosphere  with  dispersion  relation  given 
by  Equation 69. 

Osterbrock has also  estimated  damping  lengths  for sound waves  in  the  photosphere  and  chro- 
mosphere. He adopts a result due to  Lehnert (1959),  which considers  the  effects of viscosity, 
electrical  conductivity,  and the frictional  damping  already mentioned.  Since the viscous effect is 
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predominant  for  sound  waves,  the  damping-length  formula  Osterbrock  uses is 

where 5 ,  is the  damping  length,  and  the  other  symbols  have  already  been defined.  Application of 
Equation 76 to  the  photosphere  and  chromosphere  readily  shows that even  viscous  dissipation is 
negligible. We obtain 5 ,  2 l o 6  k m ,  using v 2 lo-' sec,  the  Edmonds'  viscosity  tables,  and  the ( p , T )  

values  from any of the  atmospheric  models  we  have mentioned.  Thus,  sound  waves  will not be  ef- 
fectively  damped  in  the  photosphere  or low chromosphere by any of the  above,  linear,  damping 
mechanisms. We are  led  to  consider  shock  dissipation of these sound  waves. 

If shock  dissipation of acoustic  waves is the  mechanism  for  heating  the  chromosphere, two ques- 
tions arise: 1) Under reasonable  assumptions  for  the depth of generation of acoustic  waves,  willthey 
build up into  shock  waves  over a short enough distance  from  the  generation zone to  produce  the  tem- 
perature  inversion? 2 )  Can  we express the dissipation of shock  waves as a function of local  atmos- 
pheric  parameters so that  we  can  solve  the  final  energy  conservation  equation  for  temperature  dis- 
tribution,  subject  to a successful  solution of the  radiation-transfer  problem? 

First, consider how the  shock wave builds up. Any finite-amplitude  disturbance  traveling  in a 
compressible  fluid  builds  up  into a shock  wave  because  the  velocity of particles  in  the  vicinity of 
maximum  compression  (the  condensation  phase)  exceeds  that of the  particles  elsewhere  (the rare- 
faction  phase),  leading  to  the  familiar  saying, "the crest  of the wave catches up  with the  trough" 
(Courant  and  Friedrichs,  1948).  Using  this  criterion  to  define  the  appearance of a shock  wave, 
Kuperus  (1965)  estimates  that a sound  wave travels  approximately 500 km in  the  photosphere  before 
the  crest  and  trough  coalesce.  Bird (1964~)  has obtained numerical  solutions of the  nonlinear  equa- 
tions of continuity,  momentum,  and  energy  for a spherically  symmetrical fluid,  and  obtains a forma- 
tion  distance of the  order of 500 km for  an  isothermal  photosphere at T = 6000°K. 

In view of these  results,  and  recalling  that  the sound  waves  for which we  give  mechanical  flux 
F~ estimates are generated  in a region  about 100 km thick  centered  at h 2 -350 k m ,  this  implies 
the  existence of fully  developed  shock  waves  above h 2 100 km in  the  chromosphere. If acoustic 
waves  are  also  generated by penetrative  convection  in  the  upper  photosphere,  the  resulting  shock 
waves would presumably  develop  higher  in  the  chromosphere.  Since Te does not seem  to  r ise  be- 
yond the  minimum  value  until T ~ , , ,  = is reached,  according  to  Curtis  (1965),  and  since T~~~~ 

= l ies  at 150 5 h 5 250 km for  the  models of the low chromosphere  discussed,  the  shock  wave 
first appears  predictably,  somewhat below the  level  where  the  temperature  rise is thought to  begin 

It is convenient  to  introduce at this point a new parameter,  "shock  strength 77, ," defined in 
t e rms  of density "jump" P, - P o  across the shock  front,  where P, is the  maximum  value  assumed 
by p during a cycle  and P ,  the  value of P in  front of the  shock  wave: 
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From the Rankine-Hugoniot conditions  (Courant  and  Friedrichs, 1948), it follows  that  shock 
strength 7 ,  is related  to  shock Mach  number M s  by 

Thus,  either 7,  or  M s  suffice  to  indicate  the  shock  strength. 

To  include  shock  dissipation  in  our  final  energy  conservation  equation,  we  need  an  expression 
giving  energy loss  per  unit  volume  and  time as a function of local  conditions  in  the  atmosphere. 
Bazer  and  Ericson (1959) derived  such  an  expression  for  so-called "weak" shock  waves,  defined 
here as 7 ,  < 1.0. They  give a general  derivation  for  hydromagnetic  shocks: their results are given 
here,   in the notation  we shall use  consistently  hereafter: 

where D is the  mechanical  energy input in  ergs  cm-3 sec" , z is the  period  for "shocking" the  gas 
( z = f" , where f is the  frequency  with which shock  waves  pass  through  the  local  region), P is the 
mean  molecular  weight,  and  the  other  symbols  have  meanings  already given. The  above  expression 
is for  one-dimensional  propagation  along a magnetic  field;  otherwise,  the c: /c :  term  becomes 
more complicated. In fact,  this  second  term is important only where  magnetic-field  effects  are 
important.  Since  we  ignore  magnetic  field  effects (a resonable  procedure  in  the low chromosphere 
where c: /c :  << 1.0), the  expression  for D that we use is 

Finally, if we  choose Y = 5/3, z = 300 sec,  and P = 1, we  obtain 

It  might  be  argued  that  these  values  for Y, 2 ,  and P should  be  different.  For  example, Y may 
vary  across  the shock  wave,  particularly  where  ionization  occurs.  Also, we have  chosen  for  our 
constant Y the adiabatic  value  for a monatomic  gas. Weymann  (1960) argues that radiative cooling 
behind the shock  front  occurs so rapidly  above T~~~~ = 1 that one  should there  use the isothermal 
value Y = 1. If we  accept  his  result,  we  must  consider the variation of y over a "shocking" cycle. 
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We do not do this,  because 1) the  extreme  isothermal  value Y = 1 changes  Equation 81 by a factor 
of 2.2 .only, and 2) any  mean Y we  might  use  in  that  equation  must lie well  above  the  isothermal 
Y = 1 to  be  consistent with the Rankine-Hugoniot  condition 

and  our  estimates of 

which are tabulated  in  Table 6 and obey the  condition T ,  5 1. Rather  than  conduct a detailed  analy- 
sis for a resulting  mean Y (which will not significantly  affect  Equation  81), or arbitrarily.pick  some 
value  5/3 1. Y ? 1, we  merely  use  the  adiabatic Y = 5/3. We justify  our  choice  for 2; and p on the 
grounds  that  they are representative  values,  averaged  over  the  region we a r e  studying. The  error  
we  introduce by ignoring  their  variations  will not strongly  affect  our f ina l  Te (h). 

The  estimate of T~ is the  weakest point in  our  development.  Neither T ,  , nor  equivalently, Ms,  

has yet  been  directly  measured  and  we  have only weak  theoretical  grounds  for  estimating it. We 
shall  base  our  estimates of T ,  on the  work of Osterbrock (1961), which is the  most  thorough  treat- 
ment of this  problem  available  for the low chromosphere. He derives a differential  equation  for 
the  mechanical  flux  gradient  in  the  form 

where ~ ( 7 ~  ) is the  energy  input  given by Equation 79, with  the  additional  effects of refraction  included. 
He also has an  expression  for Fm of the  form 

which  includes  refraction  effects.  Assuming an atmospheric  model  for (P, T) and an initial  value 
for T ,  (or F,) at h = 0, we can  solve  equations 82 and 83 for Fm ( h )  and T~ ( h )  . From ( p ,  T, T ,  ), 
using  Equation 79, we  obtain D(h) . 

Osterbrock  assumes an initial value  for Fm of 3.0 X 10' ergs   cm-2  set" a t  h = 0 (which lies 
in  the  mid-range of Kuperus'  three  estimates given earlier  in  this  section)  corresponding  to 7 s  (0) 
is 0.32. Osterbrock  uses  the van de  Hulst (1953) model  chromosphere  for his ( p ,  T). We 
have  rejected this model, as it was  based on LTE; indeed, the (p,  T )  variation is quite  different 
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from that of the  PSC  model  we  have  adopted.  WhileT (h) for  PSC is greater than T (h) for  van  de 
Hulst,  the  scale  height  in the van  de  Hulst  atmosphere is somewhat larger  than  in  the PSC atmos- 
phere, so p(h)  for  van  de  Hulst is greater  than p(h)  for PSC. When h has  increased  to 1000 km, the 
difference  in D is an  order=of  magnitude  because  the  density  inequality is greater  than  the  tempera- 
ture  one, but  the  general  variation  in T ,  (h) with  height h obtained by Osterbrock is still valid. 

We illustrate  Osterbrock's T~ (h) for.  magnetic-field  strengths of h = 0.5, 2.0 gauss  in  Table 6. 
Our own choice  for 7, , also  given  in  Table 6, is guided by the following  considerations: 1) 7 ,  

should  grow  from a small  value 2 0 at h = 0 to  some  value 5 1.0 in  the low chromosphere.  This 
initial trend is also  predicted by Bird  (1964~). 2) Osterbrock  admits that there may  be  some dis- 
sipation  for 7, less than his minimum  value of 0.32 (where  he  concludes  the  shock  waves are first 
fully  developed). Frisch (1967) concludes that Osterbrock  overestimates T ,  in  these low regions 
of h 5 300 km. Combining these observations,  we  conclude  that it would be  better  to  choose T ,  (0) 
= 0 and  let 7, grow  rapidly  with  height. 3) The  condition 7 ,  (0)  < 1.0 must  be  fulfilled,  or  our  use 
of Equation 79 for D becomes  invalid. 

Table 6 
The  calculations of both Osterbrock  and 

Bird  support  this view. On these  bases, we 
have  chosen  the  following q s  ( h ) :  

7 ,  = (1  - , P = 400 km . (84) 

These  values  appear  in  Table 6. They  exhibit 
the  proper  trend  and  remain  within  the  proper 
limits.  This is as  reasonable a choice  for q S  

as we  can  make;  note,  however,  that  the  esti- 
mate of 7 ,  is uncertain. 

Value of Shock Strength  Parameter 7 ,  . 
( q B  a r e  from Osterbrock, 1961.) 

. .  

h Ocm) 
. ~- . 

0 

250 

500 

750 

1000 

1250 
" 

0 

0.46 

0.71 

0.85 

0.92 

0.96 

q, = 0.5 

0.32 

0.41 

0.62 

0.71 

0.78 

-~ 
" 

7 ,  = 2.0 

0.32 

0.43 

0.61 

0.70 

0.78 

" 

In  the  region  we  call  the  upper  chromosphere,  where h > 1300 k m ,  we  could  assume  that 7 , ~  1, 
according  to  Equation  84  or,  in view of the  sharp  transition  between  the low chromosphere  and  upper 
chromosphere,  we  could  examine  the  upper  part  separately.  Bird (1964a, 196413) argues  for a con- 
stant 7 ,  in this region,  and  in  the  upper  part of the low chromosphere  for  that  matter. He derives a 
condition  for the gradient d T e / d h  in a spherically  symmetrical  atmosphere with  gravity,  starting 
with the basic  hydrodynamic  equations  and  arriving at 

d a  
dh  - 
" 

where  we  have  restricted his result  to  plane  parallel  atmospheres. ( a  = M s  - 1 is a new measure 
of the  shock strength, and  the  other  symbols  have  their  usual  meaning).  From  Equation 85, Bird 
argues  that,  for a negative  quantity  in  square  brackets, the large dTe/dh > 0 will  cause a to  drop 
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rapidly  and  make  the  dissipation  also  drop,  until dT e /dh has dropped to a value  where da/dh = 0. 
The  converse is also  true,  he  notes.  Thus,  he  predicts da/dh = 0 is the  criterion  for  stability; 
thus a (and  hence M s  and T~ ) is constant. 

Bird's  argument is weakened by the  fact that his  criterion cannot  be  applied  rigorously at a 
point,  but only shows a trend. 

To  see  this,  note  that  assuming da/dh = 0 in Equation  85  gives 

For p = 1 and  the  solar  surface  gravity,  we  obtain dT /dh = 65°K km- l .  This is much  too  large  for 
the low chromosphere. In  fact,  for  reasonable  values of (T.,, dTe  /dh), Equation  85  tells u s  that 
da/dh > 0 in  the low chromosphere, as we  have  shown  already.  For h 1250 k m ,  however,  the 
temperature  may  rise at a rate not appreciably  different  from 65°K km-' . Thus,  in  the  upper  chro- 
mosphere,  the condition da/dh = 0 may  apply. 

We shall assume that a is constant for h 2 1250 km. Actually,  we  have no reliable  model for 
the  upper  chromosphere, so it would be  useful  to  consider a range of values  for 7 , .  We shall com- 
pute  models  for  the  upper  chromosphere  for 7 ,  = 0.5 and T~ = 1.00, realizing  that as 7 ,  approaches 
1.00 the expression  for D in  Equation  67  becomes  questionable. 

There is one aspect of the  shock-wave  heating  problem  we  have  completely  neglected.  This is 
the  tendency of shock  waves to  travel  along  so-called  "ray"  paths which diverge  from  the  vertical 
direction.  Osterbrock  used only a linear  theory  (geometrical  acoustics,  analogous  to  geometrical 
optics)  for his  estimates  and concluded  that  there would be no energy  left  for  heating  the  corona 
because of diffraction.  Kuperus,  and  also  Pikel'ner  and  Livshits (1964),  pointed out that  inclusion 
of the  nonlinear t e rms  would reduce  this  diffraction  effect  and  thus  permit  coronal  heating by shock 
waves  generated low in  the  chromosphere. We a r e  not studying  coronal  heating  in  this  report; so 
we  shall not consider  the  details of shock  propagation. We consider only one-dimensional  propaga- 
tion. 

Finally, there is the  importance of electron  thermal conduction from the corona  to the upper 
chromosphere.  This  problem  has  been  studied  in  detail by de  Jager and  Kuperus (1961) andLivshits 
(1964). We shall  include a term for conduction in  the  general  energy-conservation  equation,  de- 
rived  in  Chapter III, but  will not include  conduction in the calculations, as its effect is demonstrably 
small  except  in  the  outermost  part of the  chromosphere. 
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Chapter 111 

GENERAL  METHOD FOR CALCULATING THE TEMPERATURE DISTRIBUTION 

It is stated  in  Chapter I that the aim of this study is to develop a method to  solve  an  energy- 
conservation  equation  and  several  initially  coupled  transfer  equations  simultaneously  to  determine 
the  temperature  distribution  in the atmosphere.  This  chapter is concerned  with  the  development 
of this method. 

' The  final  temperature  distribution is obtained by solving  the  energy-conservation  equation 
which  we shall now derive. We begin  with  Equation 9, which expressed  departure  from RE: 

We desire a different  form of expression  for  the  term 

Consider d7t  for  the j line. In NETPRF, t e optical  depth rv  can  be  written as 

where the parameters are all defined in  Chapter 11, Section C. Ignoring  stimulated  emission and 
using the relations between the  Einstein  coefficients  given by Equation 38, we obtain 

Now we introduce  the  definition 

for  the j t h  line.  Combining  Equations 9, 88, and 89 gives 
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where we have  also  used Equation 39 for (NRB) , and  the  approximation  Equation 20, S, B~ (T,~). 
Equation  90 is the  required  energy-conservation equation. We must  further  develop  the  left-hand 
side, which is the  radiative  flux  gradient  that  equals  the  mechanical  dissipation  in  ergs  cm-3  sec -1. 

First, let u s  exhibit a general  form  for  the dF/dh term,  which  includes  the  effects of shock 
dissipation  in  the  presence of magnetic  fields  in  one  dimension,  and of electron  thermal conduction. 
The  shock  dissipation  term is given by Equation 79 of the  previous  section.  The  conduction  term 
is given by 

Fc = - Kc T5'2 , 
dT 

where a good estimate  for K,, according  to  Billings (1966), is 

Kc - ergs  cm" sec" . 2 

Thus, a complete  expression  for  the  mechanical  dissipation  term  becomes 

where dF,/dh is obtained by differentiating  Equation 91. In  the  calculations that follow,  we shall 
ignore both  magnetic  field  effects  and  conduction,  for  reasons  given  in  Chapter 11. Taking  the 
same  values of y, Z, and p used  to  obtain  Equation 81,  we arr ive at our  final  form of the  energy- 
conservation  equation: 

We shall show in  the last part  of this chapter how the  right-hand  side of Equation 94 depends on Te 

through the line  source function S t j .  

Now we can  consider  the  radiation-transfer  problem.  Suppose  that we ignore  the last, con- 
tinuum term on the  right-hand  side of Equation 94. The  resulting equation  couples various  spectral 
lines  through  the  mechanical  dissipation  term which constitutes  the  left-hand  side. We wish  to 
uncouple these  lines  to  solve N independent transfer  equations  for the N lines  important  in any 
given  region of the  atmosphere. Only if we know how much of the  total  mechanical  dissipation D 
goes  into  exciting  the  upper  level of the j t h  line  can we solve  an  independent  transfer  equation  in 
that line. We develop an approximation  for this purpose. 

Let  us  assume  that we can  estimate  the  fraction of the  mechanical  dissipation D that excites 
continuum transitions, without solving a transfer  problem. This ,  in  effect,  eliminates  the con- 
tinuum term on the  right-hand  side of Equation 94. Calling this fraction A,, and using  subscripts 4 
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: Equation 94 assumes  the  form 

Let  us  further  assume  that we can  estimate  the  fraction of the  dissipation ~4 that  excites  transi- 
tions  in the j t h  line, without solving a transfer  problem  for  that  line; let us   cal l  this fraction Dj  . 
For  those  transitions  in which the  mechanical  energy  input  equals  the  net  radiative  loss, we can 
write 

Recalling  modified  Equation 39 for  the (NRB) j ,  we can  solve  Equation 97 for stj to  obtain a very 
useful  expression  for  the  line-source function stj in this special  case: 

The  problem is reduced  to  deciding i f  we can use Equation  98 for stj to  solve  the equation of 
transfer  for  the j t h  line.  In particular, is the  two-level  atom  approximation  implicit  in  equating 
mechanical  input  and  net  radiative loss justified? Is there a function for the expression (UA,) ( D j / z j )  
that we a r e  justified  in  using  because it gives a good representation of (2 /Aj)  (Dj/nLj ) as the  latter 
varies with  height,  and  that permits  us  to  solve  the equation of transfer ? We expect  the  two-level 
atom  approximation  to  offer a good first approximation  for  strong  chromospheric  lines of the 
collision-dominated type discussed  in  Chapter 11. We shall see in  Chapter IV, where we calculate 
the height variation of ( 2/Aj)  (Dj/nLj) for  the  lines of special  interest  that a single  negative ex- 
ponential  term of the  form cj exp {-pj T ~ ~ }  will provide a good representation  for the height  range 
of interest, i.e., 

Thus, the source function of Equation 98 can  be  approximated by 
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Solving the  transfer  equation with the  line  source  function of Equation  100 is quite  straight- 
forward,  provided  that  one  includes  the  contribution of the continuum source function to  obtain a 
proper boundary  condition  deep in  the  atmosphere. A detailed  treatment  appears  in Appendix B. 
We start with the  general  source function of Equation 8: 

where r u  = drc/drg as in Equation 7, and Sg is given by Equation 100. W e  assume  that sc 
and parameterize it by 

S c  - - S1j (1 + A ~  e -CjToj )  , 

corresponding  to  the  outwardly  increasing  chromospheric  temperature,  where 

S I j  = BY [T, (70j = 71)] ; 

and c j  are constants  for  the j t’’ line; and r1 is the  optical  thickness of the  region of integra- 
tion. In this study we can  assume that the  atmosphere is semi-infinite, i.e., T~ = m. Equation  101 
exhibits  temperature-dependence  through  the  exponential  term 

s 1 1  A .  J exp{-cj r0 j }  

We shall show that this term can  be  ignored  in  the  final  transfer equation. Physically, this is 
because  mechanical  dissipation,  which  enters  the  equation  through  the 

term,  predominates  over  the  influence of the continuum for  strong,  collision-dominated  chrom- 
ospheric  lines  except when r o j  is very  large. 

In Appendix B, we show how to  transform  transfer  Equation6  into  the  second-order  differential 
equation 

where x; = 3(d~,/d7~)2 , by using  the Eddington approximation. We can  solve  Equation 102 by the 
standard method of Gaussian  quadrature;  then  the  equation  becomes 

d2 J i  
dr 0’ 
“ 

- x i 2  (Ji -S i )  
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The  frequency  division  points "if: depend on the  line  profile  and  the  order of the quadrature. For 
the  Doppler-broadened  line  cores  to  which  the  non-LTE  theory of Chapter 11 applies,  the  line  pro- 
file is Gaussian  and  both  the  division  points  and  the  weighting  functions xi are based on the  zeros 
of Hermite  polynomials.  These  division  points  and  weights  can  be  obtained  from  Trumpler  and 
Weaver (1953). Table 7 gives xi for a three-point  quadrature  which we use for the  calculations 
her e. 

Defining S,, such that 

S,, = (I + r , ) - l  , 

we can write Equation  103  in  the  form 

where we have  used  Equations  8,  100,-and 

and  where the subscript j has been  dropped, as we are  here  treating a single  line. We obtain the 
a i  , like the x i  , once we  know the line  profile.  They  satisfy  the  normalization  condition 

rai = 1 .  

and a r e  tabulated  for a Gaussian  profile  and  three-point  quadrature,  along  with  the xi in  Table 7. 
We have  merely  used  the  values  given by Jefferies and  Thomas (1960). 

We said  earlier that 

would be satisfied  for  the  strong  lines of the  report. If c 2 P and C >> T i  (S1 A ) ,  condition  108 is 
fulfilled.  That c ,B follows  from  assuming that the region  for  large  mechanical  dissipation  in a 
spectral  line is roughly  the  same as the region  where the temperature will rise owing to this dis- 
sipation,  although  the  position of the rise might  be at the  boundaries of this region,  according  to 
the temperature  plateau  arguments  discussed  in  Chapter 11, while  the  mechanical  dissipation  per 
unit  mass could remain  essentially  constant  throughout. If we examine the values  of (C, SI) for  
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the  strong  lines  treated in Chapter  IV,  and  choose  the  value of A to  correspond  to a maximum 
chromospheric T~ of 5 l o 5  OK, we find that condition  108 is most  nearly  violated by CaII. For 
CaII, c = 4.2 X S, = 2.5 X and A 5 lo2 .  If we use ro  = l o -* ,  which accords with 
Jefferies and  Thomas (1960),  we obtain ro S, A 6 2.5 X Thus, C >> ro  S, A. However,  for r2 

the condition becomes  marginal and it is actually  violated  for r j .  Since r 3  is most  directly  in- 
volved in  the equation for J, (which, according  to Equation  106  and the  value of a3 = 0.0051116 
plays  the least important  role  in  determining J J, 4v dv) and  since  the  problem  does  not  even arise 
for  the  other  lines, we accept  approximation 108. Also, we may  have  overestimated  the r i  values 
for  CaII. Athay  and  Skumanich  (1968) consider r o  = a better choice. 

Equation  105 now becomes 

which is the  form of the  transfer  equation we solve.  This  equation is solved  in Appendix By where 
the  general  solution  to  Equation  109  for a semi-infinite  atmosphere is given by 

where kj, Q ~ ,  and Lj a r e  given by 

S i  ai (1 - $)-l = 1 , 

1 

LLj il -2)-l + 6,-1 Ll + %  (1 +e)] = 0 

j 

respectively.  The  boundary  conditions  used  to  derive  the  above a r e  J i  - S, , as T~ - 0) and 
J~ = x i - ,  (dJi/dTO) for T~ = 0, with the  latter  obtained  from  Krook (1955). 

Since s i  2 1 for all "i", we can  make  the  approximation S i  = 1 in  Equations  110,  112,  and  113 
without significantly  affecting  the results. However, we  cannot  do this in Equation 111. If s i  = 1 

is introduced  there, Equation 111 cannot  be  solved for n real, non-zero  values  for k j  without 
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violating  the  condition 

Consider  Equation 111 further.  For  the  three-point  quadrature we adopt  here,  Equation 111 
becomes a cubic  in k?  , making it sixth order  in k j  with k j  = f (k j 2  ) 1'2 . We can  solve this equa- 
tion  for  the  three  positive k j  values  appropriate  to  our  values of (ai  , xi ) already  discussed,  sup- 
plemented by calculated  values of 6 = (1 + r i )  -1 . Alternatively, we can  approximate 6 in a 
suitable  manner  and  use  values of k j  already  available. As this approximation  illustrates  the 
very  small   role of the continuum in  the  treatment of the  strong  spectral  lines of this report ,  we 
discuss it now. 

The  dependence of k on r i  , through 6 = (1 + r i  ) - l  , can  be  determined  from  Thomas'  (1960) 
work  giving  the  dependence of the k j  on parameter E ,  which plays  the  same  formal  role  in  the 
Thomas  study as r i  does  here.  For  the  three-point  quadrature,  Thomas'  work  shows  us  that k ,  

and k, are practically  independent of E and that k, 2: 0.1 e l i 2 .  Thus, k ,  and k ,  are  practically 
independent of the r i  values  here. If we make  the  approximation r i  - r i  , Table 8 shows  that k ,  

- 

TabIe 7 
Values of xi ,  ai , and k j  Used  in  Solving 

Equation of Transfer. 

7 Subscripts i ,  j for  Different 
Quadrature Points. 

I 

1.43210 

0.817657 

0.664478 

2 

0.29078 

0.177232 

0.045328 

3 I 
0.0069014 

0.0051116 

0.95418 x 
I 

1 

Table 8 

Values  for k j  Adopted from 
Jefferies and Thomas (1960). 

. 

~ 

10-4 
- 

0.664575 

0.045736 

0.94547 x lo-, 

.~ 

- ~ 

- 
r .  

10 -5 
" 

0.664487 

0.045365 

0.30148 x lo-, 

10 - 6  

0.664478 

0.045328 

0.95418 x 

and k 2  are indeed  almost  independent of T i ,  and  that k,  2 0.1 T i l / 2  . Since r i  5 10-6 for  our 
lines  where i = 1, 2, and is probably  somewhat  larger  for i = 3, we  adopt  the  approximation 
r i  - r i  = for  our  final  calculations, and use  the k j  directly  from  Table 8 for Ti = 10-6. 

- 

This  completes  our  outline of  how we solve the transfer equation  in the semi-infinite  atmos- 
phere. In Chapter 11, we stated that a rough  criterion  for  LTE-R,  where Su - By (T,) ,  is  ET^ >> 1. 
This is also  our  criterion  for T~ in  applying  the  semi-infinite-atmosphere  treatment  where 
J, - B, ( T e  ( T ~  -a)) = SI must  be  satisfied. We justify this by Equation  110  where,  for kn 6 P and 
n the  order of quadrature, J i  - S, when kn T~ >> 1. In  NETPRF,  Chapter V, Thomas  shows that kn 

scales  somewhere  in the range of E through €,I2. If we say kn - E ,  then a rough  criterion  for 
J i  - SI becomes  ET^ >> 1. 
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Now it is necessary  to  determine Dj , the  fraction of the  mechanical  energy DX of Equation 96 
that  goes  into  the j t h  line  transition. We have  solved  transfer  Equation 102 on the  assumption 
that  the  transfer  equations  for  the  individual  spectral  lines  can  be  solved  independently of one 
another.  This is equivalent  to  saying  that D, can  be  determined  for  each  line.  Noting  that 
D j  = A, DX defines  the  fractional  part A j  of Dg that  goes  into  the j line, we proceed  to develop 
a way to  estimate A, . 

Between two levels  in  an  atom  designated L and U ,  the  net  number N, of upward transitions 
due  to  collisions  per  unit  volume  and  time is 

where  the  net  collisional  bracket (NCB),, is given by Equation  41, and C,, is the  collision  rate, 
for  which we shall use  the  general  formula  in  NETPRF: 

Equation  115  was  suggested by Burgess,  Seaton,  and  van  Regemorter,  and is based  largely on work 
by van Regemorter (1962). The g term is a weakly  varying  dimensionless  parameter, whose  value 
for  chromospheric  conditions is 2 0.2 for  singly  ionized  metal  lines. 

- 

We wish  to  use  Equations 114 and  115  to  derive  an  expression  for A j  . Noting that Dj = A, Dg , 
we can  use  Equation 114 to  write 

where we have  noted  that 

and 
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for N spectral  lines. Equation  116 is perfectly  general, so far. Now, substituting  the  van  Rege- 
morter  expression of Equation  115 for c,, in Equation  114,  we derive 

which is the  expression we use for A, and from which  we  obtain D, . We shall   see  in Chapter IV that 
the Te-dependence of A, is not strong  in  those  chromospheric  regions  where A, is not  negligible. 

The  final  subject we consider here is the method for calculating  the  chromospheric  tempera- 
ture  distribution. We restrict  ourselves  to  the  problem without the continuum.  In Chapter IV, we 
shall s ee  that the H -  continuum  dominates  the  energy  balance up to  some height h 2 500 k m ,  and 
we shall exhibit there a simple method for  calculating  the  temperature  distribution  in  these  regions, 
considering  the  continuum  alone. At present we consider  Equations 96 and 97 for the  lines only. 
For the  one  line of Equation  97,  whose source  function is given by Equation  98, we can  easily  cal- 
culate  the  temperature when the  line  source function SLj can  be written  in  the form 

where s j  is a general  sink  term  equal to E + 77, or  whichever is predominant.  Equation  118 is 
general enough to  include  Equations 31 and 35 of Chapter 11, and we shall see  in  Chapter IV that 
Equation  118 is probably  adequate  for  the  lines we shall study  in  detail. 

If we equate  the  source  functions of Equations 98  and  116  and solve  for BY (Te ) , we obtain 

From our solution of the  transfer  equation, we know 

Thus, we can  calculate the T, ( T ~ ~ )  ‘ s ,  i f  we know T ~ ,  ( h ) ,  which is the  same as knowing nLj  ( h ) .  

Therefore, toeapply the method  developed  here, we can  assume  the  mass  density  and  chemical 
composition,  and  either  calculate o r  assume the ionization,  in  order to derive n L j  ( h )  . This is 
done  in  Chapter IV. 
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Once we have Te ( h )  for a region  dominated by one  line,  the  calculation is complete when we 
have a convergent  solution; but not if more  than  one  line is important.  Then,  the  problem of con- 
sistency  between  the  different Te (T,,~ (h)) ' s  and Equation 96 arises.  This  problem  arises  in  the 
region 500 < h < 1250 k m ,  in  Chapter IV. 
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Chapter IV 

APPLICATION OF THE METHOD TO THE SOLAR  CHROMOSPHERE 

A. Introduction 

Preliminary  to  our  calculations, we shall  review  the  current  status of radiative-energy  loss 
estimates  for  the  chromosphere,  to  establish  that  these  estimated  losses do not  exceed  the  values 
for  mechanical f l u x  F, given in  Chapter II, Section F. We find that  energy-loss  estimates  to  date 
are unreliable by as much as an  order of magnitude, but nevertheless  the computed  values of F, in 
Chapter 11 are adequate. 

Having established this, we shall consider  the  important question:  which  collisional processes 
remove  mechanical  energy  from  the  system?  This can  be answered by our  deriving  net  radiative 
losses  for  atoms  that can be approximated by only two discrete  levels. For these  cases,  the  local 
radiative loss must  just  balance  the  local  gain  in  mechanical  energy which has no other outlet. 
The  question  becomes  more  complicated if we must  consider  additional  levels  or  the continuum. 
This latter case will arise with hydrogen. The  result of these  energy-loss  estimates will be that 
the  H-  ion continuum, Ha,  the  resonance  doublets of CaII and MgII, Lya,  and,  for  sufficiently high 
temperatures,  Lya of HeII, should  be  considered as important  energy sinks for the mechanical 
energy  dissipated  in the chromosphere. 

Given the  above  energy sinks, we shall  proceed  to  the  temperature  calculation. We find that 
our  calculation  covers  three  chromospheric  regions:  one extending from h = 0 to h = 500 k m ,  a 
second  covering 500 < h 5 1250 k m ,  and a third covering  the  Lya region. These  three  regions 
correspond  to  the  domination of the  energy  balance by the H -  ion,  the  ionized  metals  and  H a, and 
Lya,  respectively. We shall  calculate T, in  each  region,  using  the method of Chapter 111 for  the 
outer two regions, and  developing a different  method  for  the H- -dominated  region. 

With regard  to  chemical  composition  and  mass-density  distribution  we  use  values  comparable  to 
those  for  the  PSC-model low chromosphere.  PSC  uses  the  chemical  composition  given  in the first 
edition of Allen (1955). We shall  assume  the  composition given in the second  edition  (Allen,  1962), 
which differs  negligibly  from  values  given  in  the first edition.  The 1962 values are reproduced  in 
Table 9. The  mass  density we assume  for  the  region 0 2 h 5 500 km is given by 

HI = 130 km , 

where we obtain p(o) by assuming a mean  molecular weight of unity  and all hydrogen is assumed 
to  be  neutral at h = 0, so that p ( 0 )  = n1 (o)/NA = 6.28 X gm cm-3,  where n1 (0 )  is from 
Table 1 and N, is Avogadro's  number.  For the region 500 < h 5 1250 k m ,  we use 

Hz = 145 km , 
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Table 9 Table  10 

Relative  Abundance  by  Number of Chemical 
Elements from H through  Fe,  Based 

on  Allen  (1962). 

Element 

- 

H 
He 
Li 
Be 

B 
C 
N 
0 
F 

Ne 
Na 
Mg 
A1 
Si 
P 
S 

c1  
Ar 

K 
Ca 
sc 
Ti 
V 

Cr  
n/ln 
Fe 

1 
I 
I 

1 

Atomic 
N L ~  be r 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1% 1 0 
Relative 

Abundance 

12.00 
11.16 
3.0 
2.4 
2.8 
8.48 
7.96 
8.83 
5.4 
8.44 
6.22 
7.46 
6.28 
7.47 
5.53 
7.22 
5.4 
6.62 
4.88 
6.22 
2.91 
4.82 
3.78 
5.38 
5.10 
6.90 

p(h) from  Equations  120 and 121  Compared 
with p ( h )  Obtained from PSC. 

h 

0 
100 
200 
300 
400 
500 
750 
850 
950 

1000 
1100 
1200 
1250 

p ( h )  from 
120  and  121 
(gms ~ m - ~ )  

6.28 x 10-9 
2.92 (-9) 
1.35 (-9) 
6.27 (-10) 
2.90 (-10) 
1.34 (-10) 
2.26 (-11) 
1.20 (-11) 
6.00 (-12) 
4.25 (-12) 
2.12 (-12) 
1.09 (-12) 
7.73 (-13) 

p ( h )  from 
PSC  and 122 
(gms  cm-3) 

6.28 x 10-9 
2.66 (-9) 
1.16 (-9) 
5.23 (-10) 
2.42 (-10) 
1.16 (-10) 
2.08 (-11) 
1.11 (-11) 
5.86 (-12) 
4.30 (-12) 
2.32 (-12) 
1.30 (-12) 
9.70 (-13) 

where p(h)  is obtained from Equation 120. 
Equations  120  and  121  give  values  for p ( h )  for 
the low chromosphere  that  compare  satisfac- 
torily  (see  Table  10) with  those  obtained  from 
the  PSC-model  chromosphere of Table 1, 
assuming  that 

For h > 1250 k m ,  these  scale  heights a r e  too  low,  and  another  representation  for p ( h )  is neces- 
sary. We return  to  this when we calculate Te ( h )  for h 2 1250 km. 

B. Dominant Energy Loss Mechanisms 

1. Estimates f y o m  Outside Souvces 

In this section we first review  some  energy-loss  estimates  in  the  existing  literature.  Partly 
on the basis of this review, we  can  then limit  the  number of loss  mechanisms  to  be  studied  further. 

Osterbrock (1961) provides a rough  estimate of the  radiative  energy  loss  from  the-outer  solar 
atmosphere. He  assumes  that T, begins  to r i s e  at T~~~~ = 0.003 and estimates that H - losses  are 
completely  dominant  in  the low chromosphere.  His  final  value  for H -  loss  varies  linearly with the 
assumed T~~~~ where  the  temperature  rise begins. Curtis (1965) places this r i s e  at T~~~~ = 0.0001; 
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1 
i this makes  Osterbrock's  figure  appear a gross  over-estimate. A large  factor of uncertainty is 

characteristic of his estimates,  which we shall now discuss at greater length. 

Although Osterbrock  refers  to his section on energy  loss by the  title  "Observation  Data,"  he 
makes what amounts  to a tlzeoretical estimate of the  H-  loss, which proves  to  be  the  largest. He 
derives a formula  for  the  net H - losses  for a gray  atmosphere whose temperature  distribution is 
given  by  Equation 10,  where,  for  the  zero-th  order  approximation, q(7) = 2/3. By merely  expres- 
sing the excess of emission  over  absorption, with the  emission  produced  in  LTE, he derives 
Equation  123, below. His  formula  for  the  outward  flux  due  to H - loss  in  the low chromosphere is 

3 .& 

where T, is the  minimum  temperature, ST is a mean  value  for  the  temperature  difference between 
the  minimum  temperature  and  the  maximum  temperature at the top of the  region  where  the H -  loss 
dominates  chromospheric  losses, and T is the  optical  thickness of this region. He chooses 
To = 4600"K, b~ = 200"K, and T = 0.003, and obtains n ~ ,  ( H - )  = 1.5 X l o 7  e r g s   c m - 2   s e c - l .  Multi- 
plying by 2 ,  to  account  for  energy  radiated  back down into  the  photosphere,  he  estimates  the  total 
H -  loss  from  the  chromosphere  to be 3.0 X l o 7  ergs   cm-2  sec" .  

There are several  uncertainties  in n ~ ,  ( H - ) .  The  choice of ET and T could significantly  affect 
the estimate.  Also,  Osterbrock  did  not allow for  the  possibility that the  source function for this 
emission  might  depart  from  the  Planck  function owing to a departure of the b - from unity. The 
uncertainty  in T could decrease nF+(H-) by more than  an  order of magnitude. This  quantity 7 ,  

and 6T too,  both  depend critically on the  temperature  structure of the low chromosphere  and  the 
extent of the low chromosphere  over which H- dominates  the  net  radiative  loss.  Osterbrock,  in 
choosing  the van de  Hulst-model  chromosphere,  bases his estimate on a currently  unacceptable 
model, as we  pointed  out  in  Section  D of Chapter 11. 

H 

By choosing a radiation  temperature of 6900"K, based on NRL rocket  observations  reported by 
Morton  and Widing (1961),  Osterbrock  estimates  the  Lyman continuum loss  at 3 X 10  ergs   cmc2 
sec - l ,  obtained by simply  integrating  the  Planck function at T~ = 6900°K over  the  frequency  range 
beyond the  Lyman  limit. In the  higher-lying  hydrogen  continua,  in which the  chromosphere is 
optically  thin, he computes  the  total  radiation  loss  using  formulas  derived by Parker  (1953),  based 
on the work of Menzel  (1937), for  the  emission  per  unit  volume  due  to the free bound continua of 
hydrogen;  thus, 

j(Ba, Pa, 1 C) = 

where n i  is the  proton  number  density. Again using  the  unacceptable  van  de  Hulst  model  chromo- 
sphere,  and  also  noting  that 



Osterbrock  computes  the  total  loss  in  these  hydrogen  continua as 5 X 10 5 ergs cm-2 sec - 1. The 
use of the PSC model  chromosphere of Chapter II would increase the value of TF+ (Ba,  . . ) by at 
least an  order of magnitude,  because  the  PSC  values of (n ,  ,ne), given  in  Table 1 (with n i  2 n 

assumed  for h > 500 km),  lie so much  higher  than the van  de  Hulst  values.  This  conclusion  follows 
even  though Te ( h )  lies lower  in  the van de  Hulst  model  for a given h and the latter model  extends 
over a larger height  range.  However, there is an  even  more  fundamental  objection  to  using  Oster- 
brock's TF+ (Ba, . . ). His value is the  total  loss  in these continua. But most of this total  loss is 
probably  scattered  photospheric  light or  radiation  produced by what,  ultimately, has its  Source  in 
photospheric  light that becomes  redistributed  in  frequency.  Thus,  the  net  radiative loss to  be 
balanced by mechanical  dissipation is much less than i f  derived  from Equation  125  alone. 

In treating  losses  in  the  chromospheric  lines of the hydrogen Balmer and  Lyman ser ies ,  CaII 
H and K ,  MgII A2795, ~ 2 8 0 3 ,  and Si11 A1808,  A1816, Osterbrock  does  rely on observational  data. 
These  empirical  estimates  rely on actual  intensity  measurements  taken of Lya  emission, and 
emission  in  the  central  emission  cores of the  above  mentioned  ionized  metal  lines, as well as 
emission of Balmer-series  lines  observed  in  eclipse. On the basis of the  above  data,  Osterbrock 
makes  the following  net loss estimates:  8 x l o 6  ergs   cm-2  set" from all Balmer  lines,  8 x l o 6  
e rgs   cm-2   sec  - l  from all metal  lines,  and 2 X 10  ergs  cm -' sec -' from  Lyn. He examines  data 
available  in 1961 on helium  emission  and the euv spectrum  in  general, and  concludes  that  helium 
and  other  losses  are  comparatively  negligible. 

In  assuming  that  the  above  losses are net  radiative  losses,  Osterbrock  implies that the  source 
term  in  the  source  functions of these  lines is the  collision  term eB2, (T,) . This is true  for Lyu. 
and the  ionized  metal  lines, but certainly  not  for  the  Balmer  lines,  nor  for  the  neutral  metal  lines 
(which seem  to have  been  included in his total  for all metal  lines, although his paper is unclear on 
this last point). Here again is significant  source of e r r o r  in his loss estimates. 

In all fairness to Osterbrock, he required only rough  numerical  estimates  for his work, though 
his  estimated  maximum  error of a factor of 3 or so in his final net chromospheric loss of 4 X 10' 
ergs cm-2 sec-1 is certainly  optimistic. Also, his estimates  are  made  for  the  entire  chromo- 
sphere,  and do not specify  where  the  losses  occur  locally, which reduces  their value. We have 
discussed  Osterbrock's  estimates at some  length  because  the  literature  contains  many  references 
to  them,  and  they are  extremely  uncertain.  For  example,  see  the  discussion following the  Light- 
hill (1967) article  in  the Fifth Symposium  on  Cosmical Gas Dynamics. 

Athay  (1966) has  provided  the  most  recent and comprehensive  treatment of net  radiative  losses 
from  the  chromosphere,  and we shall now consider his work  in some  detail. He estimates  the  net 
H- loss from  the  entire  chromosphere  in  exactly  the  same way as Osterbrock. Using  observational 
data  in  choosing  reasonable  values  for 6T and T in Equation  123,  and performing  the  analysis  for 
successive  regions of Ah = 100 k m ,  Athay concludes  that  the  net H - loss lies between  an order of 
magnitude below the  Osterbrock  estimate of 3 X l o 7  ergs  cm-2  sec-1 and a value  slightly  above 
this  number.  Our  criticism of Osterbrock's  net H-  loss  estimate  applies equally to Athay's 
estimates,  except  that Athay obtains his values  from  data upon which the  PSC-model  chromosphere 
is based. 
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Athay  develops  the  following  method  for  treating  the  losses  in  spectral  lines. He combines 
the condition of statistical  equilibrium  for  level L with an  energy-conservation  equation  to  obtain 
an  expression  for  the  net  radiative loss in a series having lowest-level L. This is done by starting 
with transfer Equation  6  and  deriving  an  equivalent  form of our  energy-conservation  Equation 90 
for  the  case of a spectral  line series with  no  continuum. His conservation  equation  for  the radia- 
tive  flux  gradient, or local  net  radiative loss, in  the series is 

where {huk$ is a suitably  weighted  mean  energy  for all the  levels involved  and  we  follow our 
regular notation.  In  particular, (NRB),, is the net  radiative  bracket of Equation 39 and AkL is the 
Einstein  coefficient  for  spontaneous  emission.  From  the  condition of statistical  equilibrium  for 
level L ,  the  definition of the  departure  coefficients  and  the  relation  among  the  collision  rates c,, 
and c,, given in  Chapter 11, Section  C,  for a Maxwellian  electron-velocity  distribution, Athay 
derives  the following relation: 

Here (NCB),, is the  net  collosional  bracket  given by Equation 44a. Now suppose  that we are   deal-  
ing with either a resonance  series,  for which & = 0, or  a subordinate  series which is in  radiative 
balance with all lower  levels,  making  (NRB) L i  = 0. The  second  term on the  right-hand  side of 
Equation  127 is then  zero. If we assume, with  Athay,  that these  conditions  apply,  then  substituting 
Equation  127 in  Equation  126  yields 

" - (hvkL} n L x  'Lk (NCB)Lk 

k # L  

This is the  equation Athay uses. 

He notes that the (NCB) ,,'s are generally  much  larger  than the corresponding (NRB),,'s. 
From a practical  point of view, this means that the ratio b,/b, need not  be known as precisely 
as the term ( J J v  6; du/S,,) that appears  in (NRB),,, according  to  Equation 39, where S,, 

estimate of the (NCB) Lk based on rough  solutions of the  transfer equation o r  even cruder  proced- 
ures will not be as unreliable as an  estimate of the corresponding (NRB),, i f  the latter is obtained 
in  an  equally  rough  fashion. He makes  use of this property of the (NCB),, to  estimate  losses  in 
various  spectral series, using Equation  128 and rough  values  for  the  ratios b,/b, obtained from 
various  sources. 

= BVkL (TeJ * Thus,  although  the b,'S are not,  in  general,  independent of the  radiation  field,  an 
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Table 11 

Collisional  Excitation  and  Ionization  Rates for Hydrogen with 
ne = 10 l o  cm-3  Computed  by  Henze  and  Reported  by  Athay (196513) 

Transition 

1 - 2  

1 - 3  

1 - 4  

1 - 5  

1 - I< 

2 - 3  

2 - 4  

2 - 5  

2 - IC 

T 

1 x 1 0 4  

0.0050 

7.0 x 10-5 

1.0 x 10-5 

3.3 x 1 0 - 6  

6.1 x 

5.4 x 1 0 2  

18.0 

3.3 

21.0 

Te ( O K )  

~ 

2.5 x 104 4 x 104 

0.063 

0.025 1 0.24 

0.18 1 2.6 

2.5 x 103 1 3.8 x 103  

1.5 x l o 2  2.7 x l o 2  

3.8 x 10' 8.1 x 10' 

8 x l o 4  

1.3 x l o 2  
13.0 

3.7 

1 .G 

28.0 

5.3 x 1 0 3  

4.5 x 1 0 2  

120.0 

l . G  x l o 3  

For the Lyman  and  Balmer  series of atomic  hydrogen, Athay  (1965b) uses  the  results of some 
collisional  excitation-rate  calculations by Henze, who in  turn  used  Seaton's (1962)  weak-coupling 
method  to  evaluate  collision rates CL, for  several  transitions  arising on  the  ground or the  first 
few  excited  levels of hydrogen.  Some of these  results  are given in  Table 11. Judged by the  table, 
the following estimates by Athay seem not  unreasonable: 

and : 

'23 >> '2, ' 

where  inequality 130 is restricted  to T~ $ 25000°K. Using inequalities 129 and  130,  Equation  128 
becomes,  for  the  Lyman  series, 

and for  the  Balmer series, 

subject  to  the condition  that  the (NCB),,'s of Equations  131  and 132 a r e  sufficiently  predominant. 
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Since  (NCB)L, = (1 -b,/b,) , Equation 131 is valid  provided  that b, >> b, , which  condition cer- 
tainly  prevails  for  the  upper  chromosphere,  where Athay assumes  the bulk of the  net  chromospheric 
loss  occurs  in  the  Lyman series. Though he does not  justify  Equation  131 on theoretical  grounds by 
estimating  terms  like n, c,, ( N ~ B ) , ,  (hv ) , , a t  lower  heights  in  the  chromosphere  where b, 2 b, > b, 
Prevails  and  where n1 is considerably  larger  than  in  the  upper  chromosphere,  nevertheless  the 
observed  predominance of Lya  over  the  other  members of the Lyman series gives  some  support 
to his estimate  expressed by inequality 129. It is evident  from the relevant bk ' s  that (NCB) 23 
= (1 - b,/b,) is the dominant (NCB),, for  the  Balmer series. We shall discuss  the  variation of 
these b,'s in  the  chromosphere  presently.  Equations  131  and 132 state that  the  net  radiative 
losses  in  the  Lyman and Balmer series of hydrogen are dominated by the  corresponding  collisional 
terms  for   Lya and Ha, respectively. Whether the  net  radiative  loss  actually  occurs  in that spec- 
tral line cannot  be  determined  until a transfer  problem is solved. 

Athay's  conclusion that, for h 2 1000  km, the condition b, >> b, exists, is based on his analysis 
(Athay,  1965a) of strong  resonance  lines  in which the  effect of continuum processes on the net  flux 
in the line is ignored. He shows that for  those  lines  where  the  further condition E >> B'/B, (T,) 
is met,  one  obtains 

Using a result  due  to  Avrett and  Hummer  (1964), which is a refinement of Thomas'  (1960)  earlier 
rough  estimates of the variation of (NRB)  with 7 0 7  and  which says  that,  for  Lya, 

where 



Thus,  Athay's  application of Equation  131  for  Lya  with (NRB) 2 1 is somewhat unsatis- 
factory.  However, he does not rely on  Equation  131  alone  for  net loss estimates  in  Lya, but 
observes  that  Hinteregger's (1964) measured  flux  in  Lya of 2.7 X 10  ergs   cm-2  sec - l  certainly 
makes  Lya  an  important  source of net  energy loss from  the  chromosphere.  Unfortunately,  these 
measurements do  not tell us  where  in  the  chromosphere  the  losses  occur. 

To treat the  Balmer  series we need b, and b,. Here, Athay states that (NCB) 2 3  2: 1 for the 
region of interest (500 h 5 1250 km), which implies that b, >> b, in this region.  This is in 
complete  accord with the  Pottasch  and  Thomas  study  already  mentioned. Athay then  estimates 
Balmer  series  net  losses with 

dFB a 
" 

dh - "2 c z 3  ( h u z k )  

which is essentially  Equation  132  with  (NCB),, = 1. Using the  afore-mentioned C2, due to Henze 
and  taking  values for (T,,ne,nz) from  the  PSC-model  chromosphere, Athay derives  the  values  for 
the  net  Balmer  series  loss-see  Table 12. He estimates (hvZk) = 4 X ergs in  Equation  135, 
intermediate between Ha  and the  Balmer continuum. 

Table  12 

Computed (dFB,/dh)Ah and  Observed  Total 
(Not Net) Losses in Balmer  Continuum, 

Both from Athay  (1966). 

500- 700 

900-1100 

1100-1300 

1300-1500 

(%) Ah 
(ergs cm-, sec- ' )  

G x l o 5  
4 x 1 0 5  

4 x 1 0 5  

3 x 1 0 5  

1 x 1 0 5  

Total  Observed 
Balmer Continuum 

Losses 

1.3 Y l o 6  
- 

8.3 x 1 0 5  

5.7 x 1 0 5  

3.6 x 1 0 5  

2.1 x 10 

Table  12  includes  Athay's  report of the 
total  radiative output in  the  Balmer continuum 
observed  during  the 1952 Khartoum  eclipse 
expedition  which  provided  the  data  for  the 
PSC-model  chromosphere.  A  comparison of 
these  values with the  calculated  values of 
(dFBa/dh) Ah reveals  that  the  calculated  net  loss 
in  the  Balmer  lines  series is roughly half the 
total  radiation  observed  in  the  Balmer con- 
tinuum.  Athay also  observes  that  the  total 
radiation  observed  in Ha at Khartoum is 
4 X l o 6  e rgs   cm-*   sec- l ,  which is more than 
than  twice  the  calculated  net loss for  the 
Balmer  series and  approximately  equals  the 
total  radiation  observed  in  the  Balmer con- 

tinuum. Examination of these  statements  reveals that much of the  observed  radiation  in H a  and 
the  Balmer continuum must be scattered  photospheric  light, which is what we would expect for 
radiative  transitions with the  source function  controlled by photoionization  and  not by collisions. 

Athay ignores  helium  losses, and in  particular Lya  of HeII at A304, claiming  that  the  observed 
energy  radiated  in  these  lines is only  about  5 percent of the  observed  energy  radiated in hydrogen 
Lya.  Since  the  hydrogen  Lya  value  represents,  effectively, a net  loss,  and  since  the  various 
helium lines'  observed loss must be equal  to o r  greater  than  the  net  loss  from  helium, he  con- 
cludes,  reasonably  enough, that helium losses are negligible. 
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Finally,  Athay  ignores the neutral  and  ionized  metal  lines,  claiming that the  former are com- 
paratively weak  while the latter have (NCB) ,, << 1.0 for a lesser  optical  depth  than  for  the 
hydrogen  lines. His conjecture  for  the (NCB),, for the  ionized  metal  lines is rather  speculative 
and,  for this and  other  reasons  we shall discuss  presently,  we do  not  accept his decision  to  ignore 
the  ionized  metal  lines. 

Zirker (1960) also  derived  an  energy-conservation equation from  the equation of radiative 
transfer,  for the purpose of estimating  net  radiative  losses  from  the  solar  chromosphere. He 
obtains  the  radiation-field  terms  for  spectral  lines  and continua at a given frequency, J, and J,, 
respectively, by solving two coupled transfer  equations,  using  the Eddington approximation. He 
then uses  these  values of J, and J, in the energy-conservation  equation  to  obtain the dF/& for 
those  spectral  regimes  treated.  His  results  include a quantitative  treatment of helium, so we 
include  them here. 

He estimates  net  radiative  energy  losses  from  material at the  center of a uniform  hydrogen- 
helium atmosphere  satisfying  the  following  conditions:  thickness = 10 km, total  particle  density 
= 10 1 cm - 3 ,  hydrogen-helium  abundance  ratio = 10, and Balmer continuum  intensity  fixed by a 
background  "photosphere"  which  produces  black-body  continuum  radiation with a radiation  tem- 
perature of 6000°K. These  conditions  roughly  approximate  upper  chromospheric  conditions of the 
PSC-model  chromosphere, as given in  Chapter 11, Section D. 

Zirker's  calculations  give  the  net  radiative  loss  per  gram at the  center of the above  atmos- 
phere as a function of electron  temperature T~ for  the following radiators:  the  Lyman  and  Balmer 
continua  and Lya  for  hydrogen, the resonance continua of  He1 and HeII, the  Balmer continuum of 
HeII,  and Lya of Hen. His results show the Lynzan continuum of hydrogen  predominant  for 7500 
< T~ < 25000"K, Lya  predominant  for 25000 < T, < 50000°K with the  Lyman  continuum still non- 
negligible and Lya of HeII predominant  for Te > 50000°K. The  predominance of the  Lyman con- 
tinuum of hydrogen for T~ < 25000°K is contrary  to  the  observationally  based  conclusion of 
Osterbrock that the  Lyman continuum is negligible.  Since Zirker 's  study  cannot  completely 
duplicate  the  actual  chromosphere,  where  net  losses  in  the  Lyman continuum  and Lya depend 
strongly on the  actual  chromospheric  opacity  variation  for  these  transitions, we  do not  believe 
that the suggested  predominance of the  Lyman continuum for Te < 25000°K applies  to  the 
chromosphere. 

A brief  digression  from  chromospheric  loss  estimates is now in  order,  to  consider  the  net 
radiative  losses  from  the  corona. We must  include  these  losses  in  our  discussion, as sufficient 
mechanical  energy  must  be  available  to  balance  them. In particular, if  this mechanical  energy 
has its source  in  the  turbulent  motions  near  and  above the top of the hydrogen  convection  zone, 
as we are assuming  for  the  mechanical  energy  that  heats the chromosphere,  then enough energy 
must  be left over  after  the  shock  waves have passed  through  the  chromosphere  to  balance  the 
coronal  losses. We have  already  mentioned two difficulties  which  the  accretion  hypothesis  (heat- 
ing  from  an  external,  mechanical  source)  encounters when applied  to  the  corona  in  Chapter II, 
Section F. It is very  likely,  therefore, that the coronal  net  radiative  losses  must be added  to 
those of the  chromosphere  for  an  estimate of the total  outer  atmospheric  net  radiative  losses  to 
be balanced by the  mechanical  source in the lower  photosphere. 
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Billings (1966) estimates  net  coronal  energy  losses  from  radiative,  conductive,  and convection 
mechanisms.  The latter must be  added, when they are non-negligible, if they  represent  net  losses 
from  the  outer  atmosphere.  Billings  concludes that the  net  radiative  losses  from  the  corona 
exceed  net  losses  from convection (solar wind)  and  outward  conduction by about  one  order of 
magnitude.  He bases his net  radiative-loss  estimates on a review of several  observational  studies 
of the  solar  ultraviolet  radiation.  These  studies treat emission  lines whose intensities lie so f a r  
above  the  background  continuum  that  they  effectively  yield  net  radiation  losses.  Lya  losses a r e  
not  included  in his estimate, as Billings  accepts  the  hypothesis we  have already  reviewed  that  Lya 
losses  occur  in  the  upper  chromosphere. He concludes  that  the  net  radiative  losses  from  the 
corona lie in  the  range l o 5  - 106  ergs   cm-2  sec- l .  

There is one  other  important  source of energy  loss  from  the  corona which, according  to 
Billings‘  estimates, is also of the  order of 10  ergs  cm - 2  sec -l. This is the  electron  thermal 
conduction down to  the  upper  chromosphere which  we discussed  briefly  in  Chapter II. As this does 
not  constitute a net  radiative loss from  the  corona, it is omitted  from  estimates of the  same. In 
fact,  one  current  conjecture  (de  Jager and Kuperus,  1961) is that the  upper  chromosphere is heated 
largely by conduction down from the corona,  producing  the  intense  Lya  emission  observed. We 
do not  include  any  heating of the  Lya  region  due  to  conduction, but it could  be  very  important. 
Kuperus  and  Athay (1967) argue  that  thermal conduction down from  the  corona  might  even  be  the 
source of energy  for  the  spicules. 

We devote  no  further  attention  to  the  corona  here, as we shall not carry  our  temperature 
calculations  out beyond the  upper  chromosphere.  Theoretical  estimates  have  been  made of 
coronal  radiative  energy  losses,  assuming an optically  thin  corona.  Pottasch (1963, 1964)  has 
estimated  losses  due  to oxygen, carbon,  silicon  and  magnesium,  concluding that for Te 2 25000°K 
these  elements  produce  radiative  losses  exceeding  those of hydrogen  and  helium. By neglecting 
dielectronic  recombination  (which  causes a higher  fraction of the  net  radiative loss to  come out 
of the  corona  in  the  form of emission  lines  rather than  free-bound  continua) i t  is possible  that 
Pottasch  may have erred  in  estimating at what frequencies  the  corona will lose  energy. For our 
purposes, we shall not rely on theoretical  estimates of coronal  radiative  losses, but accept as an 
upper  limit  Billings’  higher  value of l o 6  ergs   cm-2  sec- l .  

It is now possible  for  us  to  offer a rough  estimate of the  net  radiative  energy  loss  from  the 
entire  outer  solar  atmosphere. We do this to  see if the  estimates of the  mechanical flux F, given 
in  Chapter 11, Section F, provide enough energy  to  balance  these  net  radiative  losses. We see from 
an  examination of the  estimates of Osterbrock  and Athay that there is much  uncertainty  regarding 
the  lower  limit of the  net  radiative  loss  from  the  chromosphere,  because of the scattered-light 
problem, but that we can  accept  their  higher  estimates  to  provide a number that should serve well 
as an  upper bound. Thus,  the  chromospheric  net  radiative  losses  should not  exceed 4 X 10  ergs 
cm - 2  sec-1.  Billings’  estimate  for  the  upper  limit  to  the  coronal  net  radiative  losses, l o 6  ergs  
cm-2  sec- l  , does  not alter the 4 X l o 7  ergs  cm-2  sec-l   value when applied  to  the  entire  outer 
atmosphere.  Thus,  our  criterion  for  accepting the proposed  turbulent  generation of acoustic  waves 
is that  the  resulting  mechanical  flux F, satisfy F, 2 4 X l o 7  ergs   cm-2  sec- l .  In Chapter 11, 
Section F, we showed that F, is probably  in  the  range 2.9 X l o 8  2 F, 2 2.7 X l o 7  ergs  cm-’  sec-l. 
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I The  problem we consider  for-the-remainder of this section is the  choice of spectral  lines  and 

continua to  include  in  our  final  temperature  calculations. We shall  base this choice  partly  on  the 
work of Osterbrock,  Athay,  and  Zirker  already  discussed,  although this work is not  always  ade- 
quate  for  our  needs. 

2. First-Hand  Estimates 

The  most  straightforward  procedure  for  estimating  net  radiative  losses  in a collision- 
dominated  line is to  solve transfer Equation  6  for  the  case  where  the  line  source  function s t  is 
given by the general  form 

where  the  sink  term is s = E t T .  This is the  same as our  general  source  function of Equation 25 
except  for the neglect of source  term TB*. Temperature  dependence  enters  primarily  through the 
Planck  function B~ (T,) and,  to a lesser degree,  through the sink term s .  NETPRF  and the source 
function se r i e s  of papers by Thomas  and Jefferies give  numerous  examples of the  solution of the 
transfer equation  with a source  function of the form of Equation  136,  subject  to  the  approximations 
of a constant  sink  term s and a single  exponential  representation for the  Planck function.  Given 
the  solution  for J J, +, dv, Equation  136 is then  used  to  get S t .  Finally, as in  Thomas  (1960), the 
(NRB) u L  of Equation 39 is evaluated  and  the  net  radiative  loss is obtained  from 

provided  that nu is known. Having Sx  for  the  line and the  population nL for  the  lower  level, we 
can  obtain nu from  the  relation 

So one  procedure  for  determining the predominant  energy-loss  mechanism is to  evaluate  Equation 
137  for all suspected  lines  and  retain  those  lines  for  which dF/dh predominates  in  some  region of 
the  atmosphere. 

The  procedure we use  for  treating the lines  and  most  continua  here is simpler  than  solving 
the transfer equation. We rely on the A, of Equation  117,  derived  in  Chapter III; A j  is the  frac- 
tional  amount of energy  that  goes  into  the  transition L - U by inelastic  collisions  and  does not 
necessarily  give  the  energy  lost  from  the  atmosphere  in a corresponding U - L radiative  transi- 
tion.  This  occurs only in the restricted  case of a two-level  atom.  Otherwise,  the  net  radiative 
loss  must be  obtained by solving a transfer  problem.  For  example, when  we conclude  that H a  is 
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a transition  for which A, should  be  evaluated for the low chromosphere, we must  remember  that 
the  mechanical  energy going into  the 2 - 3 transition  in  hydrogen will not,  in  general,  equal  the 
net  energy loss in  Ha. In relying on oj , we replace  the  problem of estimating  net  radiative  loss 
mechanisms by the  problem of estimating  net  collisional  gain  mechanisms  for  levels (L , U). This 
is the  spirit of the Athay  (1966) study,  reviewed in the last subsection.  Our only departure  from 
this procedure is in  the  treatment of H-, where  the  small  optical  thickness of the  chromosphere 
in  the H- continuum permits a simple  estimate of the  net  radiative  losses. 

We begin  with the  lowest  part of the  chromosphere,  where H-  is important. We proceed  along 
two lines. We estimate  the  excess of emission  over  absorption  in  the  lowest  region 0 '< h '< 500 
km, including  the  non-LTE  effect  due  to  the  departure of the continuum source function from  the 
Planck function. We also  estimate  the  mechanical  energy  dissipated  in this region,  according  to 
our  assumptions about  shock  dissipation of acoustic  waves,  to see i f  the  mechanical  energy dissi- 
pated  roughly  equals  the  energy loss due  to H- and  any  other  significant  sources of radiative loss. 

To estimate  the  excess of emission  over  absorption  in H -, we first calculate  the b - whose 
H 

value  determines  the  departure of the  source function from  the  Planck function. If we assume 
that H -  dominates  the  continuum  opacity  and  ignore  the  free-free  absorption, it is easy  to show, 
as in  PSC,  that  the  continuum  source  function is given by 

The  dominance of the continuum  opacity by H- for 0 5 h 5 500 km is justified  presently.  That 
we  can  neglect  the  free-free  absorption,  compared  to  the  bound-free  absorption, is apparent  from 
the  estimates of j b j  j at A = 4700 A: 

j v f b  

j V f  f 

We obtain these  estimates  from the following  equations, which  PSC derives  using  the  Planck 
function  and the  Saha  equation: 

j v f b  

j u f f  = 4.14 x (7) n e n H T e  e - X u a u f f  
87rhv3 

The  units  for a u b f  are cm2;  for au f  , they a r e  cm4 dyne". Using the a i f  from  Chandrasekhar 
(1958)  and the a v f  from  Chandrasekhar and Breen (1946) gives  the j u f b / j u f  we exhibit.  Newer 
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calculations of the aYf  make our conclusions  stronger. 4700 8 is a representative  line-free 
point of the  solar  spectrum  near  the  maximum  observed  intensity.  For h, 2 16000 8, where air 
does  become large, 

.A. 4 
is very  small  compared  to 

I o  
BY (Te 5800') dv 

so our  neglect of the  free-free  absorption is justified. 

Induced emission,  also, can  be  ignored  in  our  further  work with H-,  owing to  the  fact  that 
(hv)  0.75 ev,  the  ionization  potential  for H- ,  and  hence the factor exp{-hu/kTe} is negligible in  
the  chromosphere. 

With these  preliminaries, we  can go on to  calculate b _. From  the condition of a statistically 
H 

steady state, we obtain 

where we use the notation of PSC. The  units  for  the  collision rates per   par t ic le   are  cm3 sec-1. 
Thomas has shown that the term  for  electron  collisional  excitation ne D is orders  of magnitude 
less than the term for the  associative  detachment  reaction nH D under photospheric  conditions. 
This  conclusion  remains  valid  in  the low chromosphere, when we use  more  recent  values for  the 
electron-negative  hydrogen  ion  cross  section  (lower  values)  reported  in  Tisone (1966), or even 
the  older,  higher  cross  section  used by Thomas  in  making his estimates of ne D for  the 
photosphere.  Frisch (1966) argues in her  thesis  that  the  concentration of H, is maintained  in  LTE, 
giving bH = 1. Thus, Equation 141 becomes 

e H -  

H .  H- 

e . H -  
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Table 13 

Values for Departure  Coefficients b in Lowest  Region of the  Chromosphere. 
H -  

h 

0 

100 

200 

300 

400 

5 00 

n H  ( ~ r n - ~ )  

3.78 (1015) 

1.60 (15) 

6.99 (14) 

3.15  (14) 

1.46 (14) 

6.95 (13) 

n~ D H . H -  

(sec-l) 

5.70 ( l o 6 )  
2.08  (6) 

0.95 (6) 

0.41  (6) 

0.19  (6) 

0.09 (6) 

T e  (OK) 

" " 

5050 

5250 

5460 

5680 

5910 

6150 

(sec- l )  

1.34 ( l o 6 )  
1.50 (6) 

1.66 (6) 

1.84 (6) 

2.02  (6) 

2.24  (6) 

_~".._______ 

1 .06 

1.18 

1.37 

1.65 

1.94 

2.24 

This equation  gives u s  b _. We exhibit the  results of our  calculation  in  Table  13 above.  To derive 
b - , we have used  the P#C model  for  the low chromosphere  for ( n H ,  Te)  , the  already quoted value 
ofH D H , H -  = 1.3 X l o b 9  cm3 sec"  (Dalgarno, 1967; Schmeltekopf, et al., 1967),  and  the  value of the 
integral 

given  in  PSC,  which uses  the  Chandrasekhar (1958)  values  for aUb f. For T~ f ,  we choose T, 

= 5800". 

Table  13  shows that at h = 200 km the  associative  detachment  reaction  rate nH D has 
decreased  to  become  equal  to  the  photoionization  rate 

H .  H -  

Beyond 200 km, the  photoionization rate  dominates.  These  conclusions are  similar  to  Schmelte- 
kopf's  conclusions, which  we gave  in  Chapter 11, Section F. 

In the low chromosphere, we would expect a combination of the  photoionization  and  our as- 
sumed  local  value of mechanical  energy  input  to  fix  the  local  electron  temperature T, until a 
height is reached  where H-  becomes a minor  source of continuum  opacity. We use  this  to  calculate 
the  temperature in the  lowest  region 0 5 h 5 500 km in  the  next  section. 
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With these b -, we can now write the  excess, E,  of emission  over  absorption  in H-: 
H ___ .?L?5 

% 
_I 

7 

If we use Equation 138 for S, and  ignore'the  frequency-dependence of the nearly  grey H- bound- 
free absorption  coefficient,  Equation 144 becomes 

E 2 2uK *- [ 2T," - ( b H-)Te4yf] ' 

where u is again the Stefan-Boltzmann  constant  and K *- = n *- a - for  the  LTE population of n _. 
We obtain K *- ( h )  by noting that, at h = 0, H -  completely  dominates the opacity  and b - -1, so 
nH- 2 n *- From  the  Bilderberg Continuum Atmosphere  or  the  opacity  tables of Cox and Stewart 
(1964a,Hb) for  physical  conditions at h = 0 in  the Sun, we find K *- 2 l o M 2  p 2 6.31 X cm". 
We use  the h = 0 value of p of the PSC  model  to  obtain  the  latter  value. In addition,  the  PSC  model 
gives  us  values of n '- ( h )  . Thus we  obtain 

- 
H H H  

H 

H 

The  results of the  calculation of excess  emission E appear  in  Table 14. 

It is interesting  to  compare  the  results of this  calculation with  calculated  values of the  shock 
dissipation D(h)  in  the  same  chromospheric  region.  Table  15  gives D(h)obtained by using Te ( h )  

from  the  PSC  model, p ( h )  from  Equation 120, q s  from Equation  84,  and  Equation  81 for D(h) itself. 
We see that D(h) 2 E(h)  a t  h = 400 - 500 km and D ( h )  2 E(h)  at h = 300 k m ,  all Of which is con- 
sistent with the idea of H-  dominating  the  energy loss out to h 2: 500 km-though  we must  point  out 
that this is no proof,  considering that every  estimate upon which this coincidence is based is quite 
rough,  particularly the estimate of D(h) . Furthermore,  the huge excess of E(h)  over D(h) as we 
proceed  in  toward the limb is not unreasonable when we consider  that  the T= ( h )  values  from the 
PSC  model  chromosphere are  almost  certainly too high there. We conclude  that the mechanical 
energy  input  and the excess  emission  in H -  are roughly  equal  in the region 0 5 h 5 500 km. The 
total  mechanical  dissipation I D(h) dh in this range is approximately l o 6  ergs  cm-'  sec-' .  If we 
ignore our very  large  estimates of E(h)  below 200 km,  the I E(h) dh over this region  yields a like 
value. This is roughly  equal  to  Athay's  lower  estimate  and is a good order of magnitude below 
Osterbrock's  estimate. It suggests  that  the  net  radiative  loss  from  the  entire  outer  atmosphere 
may lie between lo6 and l o 7  ergs  cm-2  sec" , well below the oft-quoted Osterbrock value. 

We must  consider  the  other  possible energy- sinks for the mechanical  energy  in the region 
0 < h <' 500 k m ,  to  check  our  conjecture that H- does  dominate the net  radiative  losses  there. 
We must  consider the hydrogen  continua  and the spectral  lines  from hydrogen  and  the  neutral 
" 
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Table 14 

Values of Excess  Emission  E@)  in H- f rom Low Chromospheric Region 
0 5 h 5 500 l u n .  

400 

K * (cm-l) 
H- 

6.31 x 10”l  

1.87 (-11) 

6.66  (-12) 

2.64 (-12) 

1.09  (-12) 

4.71 (-13) 

Te ( O K )  b -  

5050 

1.18 5250 

1.06 

2.24 6 150 

1.94 5910 

1.65 5680 

1.37 546 0 

E(ergs  0111-3 sec-1) 

0.714 

0.401 

0.173 

0.063 

0.031 

0.018 

Table  15 

Calculated  Shock  Dissipation D@) for Height  Range 
0 5 h ’< 500 km Using D@) = 1.025 x l o 5  pTe .I,”. 

0 

100 

200 

300 

400 

500 

6.3 x 10-9 

2.9 (-9) 

1.4 (-9) 

6.3  (-10) 

2.9  (-10) 

1.3 (-10) 

5050 

5250 

5460 

5680 

5910 

6150 

0 .o 
0.22 

0.39 

0.53 

0.63 

0.71 

0.0 

0.0158 

0.0452 

0.0548 

0.0440 

0.0303 

metals.  The  temperatures below 500 km a r e  too  low for  any  helium  transitions  to  be  important 
and we shall  show,  in our treatment of the  ionized  metals  to follow presently, that the  optical  depth 
in  the  lines of the  more abundant  ionized metals  becomes so large below 500 km  that  detailed 
balance  can  be  expected  for  them  there. 

First,  consider  the hydrogen  continua. It will be  convenient  to  consider  these  continua  for  the 
entire low chromosphere,  rather  than  restrict  ourselves  to  the  region 0 < h ’< 500 km. 

In the  lower  part of the low chromosphere,  where 0 5 h 5 500 km, the departure  coefficients b, 

will all lie near  unity,  with  the  extreme  variation  from  unity  given by b, 2 b, = 3.4, according  to 
the  PSC  model of Table 1. Actually, b, may be slightly  greater  than b, here, but the  difference 
is not  important for our  purposes.  Since  the b, for k > 2 all lie below this value,  and  since all 
the b, decrease  rapidly as height h decreases, we expect all the (NCB),, connecting the bound 
levels of hydrogen  with the continuum to  rapidly  approach  zero with decreasing height in this 
region, at least until  such  height is reached  where b, 2 b, decreases below unity. 

Frisch (1966) has  calculated b, for this low region,  assuming b, = b, and  including  the  con- 
tribution of H -  and  the  Paschen  continuum  to  the  opacity  and an Osterbrock (1961)  type of 



mechanical  dissipation  term.  She  gives  values  for b, ranging  from 0.78 to 1.00 at h = 0, depending 
on initial  conditions  for  the  model.  These are minimum  values  for b, in the region 0 5 h 5 500 
k m ;  the  thiclmess of the  sub-region  for which b,  < 1 never  exceeds about  100 km  in  her  models, 
except  in  one  extreme  case  where it is about 200 km. These b, < 1 will make  the  (NCB),,  negative 
for b, = 1. However,  these  negative  values  seem  to  occur  over a thin  sub-region  only, the very 
sub-region  near our h = 0 point  where we know that all our  estimates-D(h), E(h), and T, ( h )  -are 
rather unreliable.  Thus, we ignore  the  departures of (NCB) ,, from  zero  in  this  sub-region, and 
exclude  the  hydrogen  continua  from  our  energy  balance  in  the  lower  region, 0 5 h 5 500 km. 

In the next region, 500 < h 5 1250 km, we are faced with a different  situation.  Here  the 
(NCB),,'s for  the  lower  levels of hydrogen are better  approximated by unity  than by zero. It be- 
comes  necessary  to  calculate  the  quantities nk Ck,(~CB),, (hv)kK , for k = l ,  2, * - *  up to  some 
value of k where  this  quantity  becomes  negligibly  small. We do this  for  the  first  three hydrogen 
continua,  using  (NCBlk, = 1, the qK from  the  previously  referenced Henze  work for ne = l o l l ,  
Te = l o 4 ,  Table 1 for  values of n1 and n 2 ,  the Boltzman  equation  and b, 2 0 . 2  b, for n3, and the 
previously  referenced  Thomas  and  Pottasch  study and Tables 1 and 16 for  the  behavior of b,, b, , 
and b3 as functions of T~~~ and of height h .  Table  16  gives  the  results of this  calculation. 

Table 16 

Calculated  Values of nk CkK (NCB),, !hV)kK (ergs sec-l) 
for the First Three  Hydrogen  Continua for  Selected  Heights 

in  the  Range 500 < h 5 1250 km. 2 1.6 x -1 ::: ; z" ..:;F\ 
~~ ~~ -____ 

h ( I a n )  n l ( ~ ; ; ( ~ ~ ~ j ; ~ ~ ~ > ) l K  "2 C2K(NCB)2K ( h V ) ' 2 ~  
"3 '3, (NCB\3K  ( ' lU)3K 

(ergs   cm-3 sec-1) (ergs  cm- sec-l) 
.. 

3.0 x 10-3 

1250 4.2 x 10-4 4.9 x 10-4 1.0 x 10-3 
~ " .. . - 

Table 16  shows  that  the  amount of mechanical  energy  delivered  to  the  chromosphere  in the 
first   three hydrogen  continua is not  completely  negligible  compared  to  the  mechanical  energy  input 
given by I D(h) dh over the region 500 < h 5 1250 km. We have already  noted that this integral 
has a value of - l o 6  ergs   cm-2   sec- I .  We readily see that the  mechanical  energy  required by each 
of the first three hydrogen  continua  for 500 < h 5 1250 km is of the order of 105 ergs  cm-*  sec-I .  
We have  somewhat  overestimated  the  requirements of these three continua by using T, = 10 4, 

making ckK too large.  However,  this could  be balanced by the  additional  requirements of the  higher 
continua,  which  must be included  until (NCB),, becomes a small  fraction of unity. The  hydrogen 
continua  could easily  take up half of the  mechanical  energy JD(h) dh which  we estimate  to be 
available. 

The  Balmer continuum deserves  further  treatment.  The  observed  radiation  in the Balmer 
continuum is far from  negligible, as examination of Table 12 reveals.  Since  Table 12 is confined 
to  the  region 500 2 h 5 1500 km, we  should ask i f  the  Balmer continuum losses below 500 km are 
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of comparable magnitude.  Athay  (1966) remarks  that  the  observed  radiation  in  the  Balmer con- 
tinuum  actually  reaches a maximum at 400 km (below  which good data  were not available  from  the 
1952 eclipse), so this observed  radiation is of the  order of the  mechanical  energy  dissipated  in  the 
lower  region 0 5 h 5 500 k m ,  according  to  Table  15  for D(h). The  comparatively low values of the 
mechanical  energy  estimated  in  Table  16  to  ionize  hydrogen  from  the  second bound level  suggest 
that much of this  observed  Balmer continuum radiation is scattered  photospheric light.  However, 
this still leaves  the  possibility of more  absorption of Balmer continuum  radiation  than is emitted 
in  the  chromosphere, so we must  assure  ourselves  that  there is no appreciable  net  transfer of this 
energy  into the thermal  modes. 

Thomas  in  PSC  evaluated the net  radiative  (or rate) bracket  for  the  Balmer continuum  (NRBC) , 
for  the two cases of detailed  balance  in  the  Lyman  continuum  and  negligible  Lyman  continuous 
opacity,  where  the  atmosphere is assumed  transparent  in  the  Balmer continuum  but is locally 
opaque in  the  Lyman  lines. In both cases,  he  finds  (NRBC)  equals a negative  number.  Physically, 
this is due  to the predominance of photoionization  from  level 2 over  collisional  excitation  between 
levels 2 and 3, an  effect we mentioned when discussing  the  source function for photoionization- 
dominated  lines.  The  negative  value of (NRBC),  shows  that  there is no  net  radiative  loss  from the 
atmosphere  in  the  Balmer  continuum, but rather  that the  atmosphere  actually  does  absorb  more 
radiant  energy  in  the  Balmer continuum  than it emits. 

We  now ask i f  this could be an  important  source of thermal  energy. We proceed by determining 
whether  the  net  flux of photospheric  radiant  energy into the  Balmer continuum is small  compared 
to  the  local  mechanical  dissipation,  and  thus  ignorable. We start by exhibiting  several  useful  rela- 
tions  derived by Thomas  in PSC. For  the  Balmer  continuum, it is easy  to show from  the  equations 
in PSC, Chapter I V Y  that  the  flux  gradient  under  conditions of detailed  balance  in  the  Lyman  lines 
can  be  approximated by 

dFBa I c 
dh 

where a three-level  atom  plus continuum approximation has  been  used  and  no  transfer  problem has 
been  solved.  Under the same  conditions,  using  values of departure  coefficients b, and b, for  the 
low chromosphere  taken  from  Pottasch  and  Thomas  (1959), and also  assuming  transparency  in  the 
Balmer  continuum,  Thomas  obtains  the two expressions  for (NRBC),  mentioned  before.  These are 

for  detailed  balance  in  the  Lyman continuum,  and 

for  transparency  in  the  Lyman continuum. The  quantity A is given by 

A 2 0 . 4  b, X, e x 3  (NRE%),* , 

with all parameters defined in  Chapter 11, Section C. 
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If we take T~ = 6000°K and  further  reduce Equation 
150,  we  obtain 

Since  the  temperature  dependence of A is not  too  strong  for 
5000 < T, < 8000%, we need  onlydetermine b, and (NRB) 32 
for  H a ,  and  we can evaluate  the  flux  gradient  in  the  Balmer 
continuum in  the low chromosphere  with  Equations  147-149, 
using Equation  151 for A. 

Consider , first the  lower  region 0 5 h 5 500 Inn. Here, 
r 2 100,as shown in  Table  17,which  also  showsthat this 
lower  region  satisfies  detailed  balance  in the Lyman con- 
tinuum.  Using the result b, 5 b2 to  obtain b, 2 1 for T , , ~ ~  

0Ha 

Table 17 

Height  Dependence of -rLYc 
and T~~~ from PSC Model 

Chromosphere. 

h  (km) 
"~ ~" 

750 

850 

950 

1000 

1100 

1200 

1250 

1300 
-~ 

7 
L Y  c ~- 

1 x 103 

2 x 102 

96.0 

35 -0 

19.8 

6 .6  

~~ 

roHa 

34 -5 

28.5 

23.4 

21.7 

18.7 

17.0 

2 100,  and  using  Thomas'  (1960)  values  for (NRB),, as a function of T~~~ ( T ~ ~ ~  = 100, (NRB),, 
= 0 . 0 0 1 2 ) ,  we obtain  the  value A : 0.06. Using this  value  and  combining  Equations  148  and  147, we 
obtain 

3.0 x 1 0 - 4  ergs an-, sec" , 

0 5 h 5 500 km 

Comparing this with the  values  for E ( h )  for H-  and D(h) for  the  local  mechanical  energy input 
(Tables  14  and  15,respectively), we see  that dF,, ,,/dh is more  than two orders of magnitude below 
either  and  can  surely  be  neglected  in  the  region 0 5 h 5 500 km. 

Now consider  the  higher  region 500 2 h 5 1250  km. Repeating  the  type of calculation  done  for 
the lower  region, we  find  that 

500 5 h 5 1250 km , 

Ghere we use  intermediate  values of (NRB),, as functions of T~~~ from  Thomas (1960),  Equation 
151  with Te 2 6000°K for A ,  b, 2 1 from  Pottasch  and  Thomas (1959),  and either Equation  148 or  
149 for (NRBC),. It does  not  matter  much which equation,  148 o r  149, is used as Equation  151 
gives A 2: -1, so (NRBC), is of order  unity  in  either  case. Equation  153 is uncertain  to  more  than 
a factor of two  anyway, as we are in the region of intermediate  Lyman  continuous  opacity  where 
all quantities are estimated at values between those  for  optically  thick and thin  atmospheres. 
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We are now faced  with two problems: 1) the  roughness of the  above  analysis,  difficult  to  im- 
prove without  solving a transfer  problem,  and  2)  the  magnitude of dF,, ,Jdh, which says  that  the 
net  flux of photospheric  radiant  energy  into  the  Balmer  continuum is of the  same  order as the 
mechanical  energy  dissipated  in  this  region. We see the latter by noting  that ID(h) dh for 500 5 h 

< 1250 yields -106 ergs   cm- ,   sec- l ,  while I (dFBaI,/dh)dh also  gives -106 ergs  cm - 2  sec-1  in 
this  region. 
- 

Without  going into  detail on where this dFBa,Jdh energy  flux  goes, we can  make  one  simple 
observation  concerning  energy balance.  The  region  currently  under  discussion has T, > T, I 

according  to  the  PSC  model of Table 1, and  the  photospheric  radiation  field  absorbed by the  chro- 
mosphere is well  described by a Planck function at T 2: T, in  the continuum. Thus,  the  energy 
of the  Balmer continuum  photons absorbed  in this T, > T, region  cannot heat the gas beyond 
T,, , without  violating  the  second  law of thermodynamics. A s  far as competing with D(h) as a 
source of thermal  energy,  the  Balmer continuum  can  be  ignored  in  this  upper  region,  provided 
that  the condition T, T, is actually  satisfied  there, as the PSC  model  suggests. 

This  completes  our  special  study of the  Balmer continuum. Let  us  consider  the  lower  region 
0 5 h 5 500 km  again,  regarding  the  mechanical-energy  input  into bound-bound transitions of 
hydrogen  and the neutral  metals. 

First consider  the hydrogen transitions.  The  mechanical  energy input  into Lya is negligible 
because of the  great  optical  thickness of the  lower  region  in the Lyman  continuum, so that b, 2 b, , 
giving (NCB),, 2 0. However,  the  Lyp  transition  may  take up much  mechanical  energy. If we use 
the  Table 11 value  for c,, at ne = l o 1  and Te = 10 4, and  the n,  ( h  = 200 km)  from  Table 1, and 
allow  that b, at h = 200 km  may  be as large as 2.0 with b, 2: 1, we see  that n1  c,, (NCB)~, (hu),, 
is more than  an  order of magnitude larger than  the  total D(h) a t  200 km. On the  other hand, c,, 
should  really  be  recalculated  in  this  region,  since  the  actual  temperature is more like 5000" than 
10,000". Also, Frisch's (1966)  models show that b, ( h  2 200 km)  may  be as low as unity,  depending 
on the  amount of mechanical  energy  dissipated  in  the low region which is poorly known. Thus,  it 
is quite  possible  that  our above estimate at h = 200 km is several   orders of magnitude  too  large. 
Below and  above h 2: 200 k m ,  n1 c,, (NCB),, (hv),, should drop off from  the  value  around h = 200 
km because b, 6 1 below and n ,  (h) decreases above.  Finally, C,, is almost  an  order of magni- 
tude less than c,, so the  members of the  Lyman  series  above  Lyp are comparatively  unimportant 
mechanical-energy  sinks.  Unfortunately, we  cannot  be sure from  these  estimates  that  LyF is com- 
pletely  negligible  in  the  region 0 5 h 5 500 km. 

The  local  net  gain of mechanical  energy by H a i s  n2  C,, (NCB),, ( h v )  23. Even for (NCB)~, = 1, 
which is too large  for  the low region, we see that n2 c,, (NCB),, (hu),, << ergs ~ m - ~  sec-l  , 
considering  our  use of c,, at T, = l o4 .  Thus,  the H a  collisional  excitations a re   smal l  enough 
compared  to D(h) to be  ignored.  The same  argument  shows all of the Balmer and  higher  hydrogen- 
series transitions  to  be  negligible  compared  to D(h). 

To estimate  the  mechanical-energy input  into  transitions of the  neutral  metals, we  cannot 
assume  LTE  to  be  valid  in  the low chromosphere, as Zirker (1956, 1958) has shown in his analysis 
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of several  lines of neutral  metals (Nay Mg, Al, Cay  and Fe) for which  he  provides  estimates of the 
height h at which T~ ( h )  equals  unity  for  each  line.  The  necessity  for  some  non-LTE  effect  arises 
when we compare 1) the  inference  from the Saha  equation  that the ionization of the  metals  should 

mosphere should  be  optically  thin  in the metal  lines, with 2) Zirker's  analysis which  shows  definite 
leave  such a small  LTE  ratio of neutrals  to  ions - for 0 5 h 5 500 km)  that  the  chro- 

self-absorption  effects  for these lines.  Zirker  uses data from  the  same 1952 Khartoum  eclipse 
that the PSC-model  chromosphere is based on. Unfortunately,  the  data  were of poor  quality  for 

1 h 500 km, and  many of his results  do not directly  affect the region 0 5 h 5 500 k m ,  where  the 

f 

neutral  metals could  play  an  important  role. 

The  rough  estimates of radiative  losses by Osterbrock  and Athay,  giving the  total  observed 
radiative  flux  in  the  lines of all neutral  and  singly  ionized  metals as a few times 106 ergs   cm-2 
sec-l  , are not  too  helpful either,  particularly when one  considers that each is based on different 
assumptions,  different  data, and  even  different  spectral  regimes.  Furthermore, the observed 
fluxes  from  the  neutral  metal  lines are certainly not  net radiative  losses  from  the  chromosphere, 
but arise primarily  from  scattered  photospheric  light, if we judge by their similarity  to  the  Balmer 
lines,i.e.,most  have  photoionization-dominated  source  terms. On the  other hand,  to  examine  the 
100 strongest,  or 1100 strongest  such  lines  described by Athay,  even by several  "prototypes" of 
similar  excitation  potential,  arising  from  atoms of similar  fractional  abundance,  etc., would be 
extremely  time-consuming. And it should be pointed  out  that  the  total  observed  loss  from  the 1100 
mentioned  was  observed  to  be  twice that of the  strongest  100, so we  cannot restrict  ourselves  to 
the few strongest when discussing these lines. 

We proceed,  therefore, by first noting that the  total  radiative  flux  from  the  chromosphere  in 
the  neutral  lines is not likely  to  exceed l o 6  ergs  cm-2  sec- ' ,  i f  we judge by the observations of 
Osterbrock  and Athay. Then we recall  that  lines with photoionization-dominated  source  functions 
scatter  more  energy  than is received  from  collisional  excitation, as mentioned  above. How much 
more,  we could estimate by examining  the  predominance of the photoionization source  term -qB* 

over  the  collision  source  term  in  the  line E B ~  ( T, ) . However , since  the  mechanical  dissipation 
D(h) of Table  15  yields a value  for ID(h)  dh over 0 5 h 1: 500 km of order l o 6  e rgs   cm-2  sec-.' , 
it follows that at least the bulk of our  mechanical  energy  must  be  available  for  collisional excita- 
tions  in  other  energy sinks than all the neutral  metals  taken  together. 

This  concludes  our  consideration of the  other  possible  mechanical-energy sinks in  the  region 
0 5 h 5 500 km. We cannot  discount the possibility  that  the  cumulative  contribution of the  hydro- 
gen  continua, the hydrogen series, and  the  neutral  metals could equal JD(h) dh over this region. 
Our earlier conjecture that only H- is an  important  mechanical  energy  sink  in  the  lower  region is 
weakened  by the  above  considerations. 

Nevertheless, we shall ignore  the  contribution of all mechanical  energy sinks other  than H - in 
this lower  region,  justifying this procedure on the  generally  reasonable  correspondence between 
E(h) and D(h) in  Tables 14 and 15, at least above 200 km. However, we must  keep  in  mind  the 
reservations  mentioned  here. 

I 
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This  concludes  our  consideration of the  region 0 5 h 5 500 km. What about  the  chromosphere 
for h > 500 km? Provided that T, does not  exceed 50000"K,  we can  ignore  helium,  according  to 
the  Zirker (1960)  study, so we  consider  the  lines of neutral  hydrogen  and  the  abundant  singly 
ionized  metals. 

First, consider  the hydrogen  lines. We have  already noted that,  for T, 6 25000°K and  chro- 
mospheric  conditions at h > 500 k m ,  the condition of Equation  130 

holds, so in  the  upper  region of the low chromosphere  the  2 - 3  transition is the only Balmer 
collisional  transition  that could be a significant  energy sink. The  Paschen and  higher  hydrogen 
series can  be  ruled  out  because of the bk's. For k 3, i f  b, : b, +, , (NCB), , k t  , - - 0 ,  and, i f  b, 

>> bktj ( j  = 1, . .  ) , then  the  number  density n k t j  << n,. In either  case, n, c,, (NCB), , k + j  

(hv) , ,  k + j  are negligible when compared  to this quantity  for  the  Balmer  case  with (k, j )  = (2,l). 
To see this, we use  again  the  table of Henze's ck, k t j  provided by Athay  (1965b),  and the non-LTE 
Boltzmann  relation (with the b, ' s ) ,  and  assume  that the behavior of h, ( T ~ ~ ~ )  for all k 2 3  mimics 
that of b3 from  Pottasch and  Thomas  (1959),  subject  to the condition b, 2 bktl . This  covers  the 
case of hydrogen  except  for  the  Lyman series, which  we now examine. 

Consider  once  more  inequality 

which says that the 1 - 2  collisional  transition is the  dominant  energy sink in  the  Lyman series  as 
long as (NCB) , , $0. Where  in  the  chromosphere  does this mechanical  energy  input  occur ? To 
answer this question,  we  compare  the  quantity n ,  C, ( N C B ) , ,  (hv)  ,, for this transition with the 
analogous  expression  for  the  singly  ionized  metals,  which are treated next. When this comparison 
is made  for  the  region of h 5 1250 Inn, we  find the condition  (NCB) , 2 0 to hold,  by  examining the 
PSC-model low chromosphere  and  the  Pottasch and Thomas (1959) study of departure  coefficients 
b, and h,. The PSC  model  gives T~ 6 8000°K and ~ ( L ~ C )  2 10  for h 5 1250  km. The  Pottasch 
and  Thomas  study  gives b, 5 h, for ~ ( L y c )  2 10, T,, = 6000"K, ne = 10, l ,  Te = l o 4 ,  and  detailed 
balance  in  the  Lyman  lines.  Thus,  (NCB),, 2 0 should be a good assumption below  1250 km  and 
above  the H- region.  From this it follows that n,  c,, (NCB),, (hu ) , ,  2 0 below 1250 km, so we 
ignore  this  transition  there. 

Consider  the  singly  ionized  metals.  Because of their low ionization  potentials, we would 
expect and  shall  assume  the  more abundant metals  to  be  singly  ionized  in  the  region 500 < h 

< 1250 km. Zirker (1956) has  studied this problem.  From his determination of optical  depths  in 

80 



the  resonance  lines  from  the  singly  ionized metals BaII, ScII,  SrII, TiII, observed in the 1952 

are in  the  singly  ionized state above this height  (ionization  potentials:  Bay 5.21 ev; Sc, 6.54 ev; Sr ,  
5.69 ev; Ti, 6.82 ev)  and  that  the  Allen (1955) relative  abundances  apply  everywhere. He obtains 
excellent  agreement  with  the  value  for  the  neutral  hydrogen  density  reported  in  Table 1 for  the 
PSC  model,  which is based on  continuum  data. This  supports  the  assumption that above 500 km, 
all metals with I.P. 5 8.0 (Cay Mg, Si) will be  singly  ionized  in  the  region 500 < h < 1250 km. Ad- 
ditional  support  for this assumption is provided  in a study by Athay and  Zirker (19621, which  shows 
that  for ne = 10 l1, T~ = 104, most of the  calcium will be  singly  ionized, but that, by the  time Te 
= 15000°K is reached,  most of the  calcium will be doubly ionized.  They  obtain  these  results by 
approximating  the CaII  ion by three bound levels (4S, 3D, 4P) and  the  continuum.  Their  results 
are independent of optical  depth  in the center of the  resonance doublet.  In  view of the  above  result, 
when we examine  the  temperature  structure of the  PSC-model  chromosphere of Chapter 11 we can 
reasonably  assume that all calcium is singly  ionized  in  the  region 500 < h < 1250 km and,  for 
h 2 1500  km,  calcium is at least  doubly  ionized. W e  can  make no statement  for 1250 < h < 1500 
km,  except  that  the  transition  from  predominantly  singly  to doubly ionized  calcium  occurs  there. 

.i' eclipse, he calculates  the  neutral  hydrogen  density at h = 500 k m ,  assuming that all these  metals 

What transitions  in  the  singly  ionized  metals  should we expect  to  be  strongest  in the solar 
spectrum?  From  considerations of chemical  abundance  and  observations of strong  chromospheric 
lines,  we conclude that the resonance  transition  in MgII is by far the  strongest , and that the 
resonance  transitions  in CaII  and Si11 might  also  be  important.  This  conclusion is supported by 
the spectra of Purcell, et al. (1963) for MgII,  Dunkelman  and  Scolnik  (1959) for CaII,  and Detwiler, 
et al. (1961) for SiII. These  three  studies  span the spectral  range 4000A - 500A and  show  that  the 
resonance  lines of the  above  three  ions and Lya of hydrogen  dominate  the  line  spectrum. Also, in 
the  extreme  ultraviolet  spectra down to 250A reported by Zirin,  et al. (1963)  and  Austin,  et al. 
(1966), there  are  emission  l ines of highly ionized  elements  characteristic of the  corona, but no 
line  comparable  in  intensity  to  those  just mentioned. 

The  disk  spectra of MgII, CaII,  and SiII  exhibit the emission  cores  characteristic of the  singly 
ionized  metals  and  illustrated, with a central  reversal,  in  Chapter 11, Section C. The  central 
reversal  is also  present. MgII has a particularly  strong  emission  core. 

In addition  to  assuming  that all magnesium,  calcium,  and  silicon are singly  ionized  in the 
region 500 < h < 1250 k m ,  we can  show that it is reasonable  to  assume that the  ground state 
population  can be approximated by the  total  population of the ion. Since T, < 10,000" in this region, 
according  to  Table 1, we consider  the  most  unfavorable  case ( T~ = 10,000"). Using  partition  func- 
tions  from Allen  (1962)  and estimating  the  fraction of the total  population  lying  in the ground  state 
for  each  ion, we find  that this fraction is greater  than one-half for all three ions.  Table  18  shows 
this. Non-LTE effects  favoring  the  ground will enhance this result.  Table  18 is derived  from 
the  relation 

" 
" 0  g0 
n - U '  

- 
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Table 18 where go and U are the  statistical weight of 
the  ground state and  the  partition function of 
the  ion,  respectively. Of course, go = (2s0 t 1) 

X (xo t 1) = 2 (xo t 1)  for  the  one-electron 
states. 

Ratio no/n of Ground  State  to  Total Ion 
Populations Using Partition  Functions 

at Te = 10000" from  Allen (1962). 

Ground Partition 
Ion 1 State 1 FunFon  1 no/n 

Now let us  consider which of the  impor- 
tant  mechanical  energy  sinks  discussed  for 
500 < h < 1250  km  should  be  included in  the 
final  temperature  calculation  for this region. 
We shall not treat   the hydrogen  continua or  
the  collisional  transition  for  Lyp  further,  even 
though  they  may  absorb h a l f  the  mechanical 

energy.  Thus,  an  uncertainty of a factor of 2 is introduced  into  the  amount of mechanical  energy 
D(h)  available  for  the  other  four.  This  uncertainty  does not  affect  the  final  results  to a first  ap- 
proximation.  Table  19  contains  the  necessary  atomic  parameters  for  the  ions we consider.  The 
first  three  columns need no explanation,  except  that A, refers to  the  principle  line of the  multiplet. 
(t$,L)T in column 4 is the Einstein  coefficient  for  spontaneous  emission,  calculated  from 

Table 19 

Atomic  Parameters for Selected  Ions.  See  Text for Description. 
T 0 1  = 7 0  (Lya )  - - 1 ~ [ 3 x  106' ( 3  x 1 0 '  - h ) ]  , 

__ 
3 1 2 4 7 9 10 5 6 8 

Relative 
Element 

lbundancc 

scale) 
(log, 0 

Transitior 
T e r m s  Ion E 

Hydroger 

(for Ha) 

CaII 

MgD 

SiII 

0.441 x 10' 

1.51 x 10' 

2.56 x 10' 

8.10 x 10' 

0.428 (0.6408 1 2.00 6562 

3933 

2795 

1816 

3 . 1  x 10"' 
6.22 

7.46 

7.47 

!. 5 x  lo- '  

1 .  2 x  l o - .  

!. 5 x 10-1 

0.700  1.05 

0.600 0.90 

1067 0.445 
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where ( g f ) T  is the  product g, f,, = -gu f,, for  the  multiplet, g, is the  statistical weight of the 
upper  level,  and A. is the wavelength in  microns  (Allen, 1962). Subscript T refers to  the  entire 
multiplet.  The  statistical weight g, for  the k-th level is given  by g, = (2s, + 1) (x, + 1) for  the 
k-th level in MgII, CaII,  and Si11 and by g, = 2k2 for  the  k-th  level  in hydrogen.  Column  5  with 
A = (gu/gL) A,, A,2  is self-explanatory.  In  column  6 f,, is obtained  from  Allen  using f,, = (gf)=/g,  . 
Column  7 follows  from  Table  9 of relative  abundances of the  elements. 

Column  8 is the  theoretical  absorption  coefficient at line  center  for  zero  radiative  damping 
given by 

where M is the  mass of the absorbing ion.  Equation  156 is derived  in 
further  to 

Allen (1963). It  reduces 

(157) 

by our  definition of A = (gu/gL) (AuL A:). We use a. to  estimate the optical  thickness of the  chro- 
mosphere  in the ionized  metal  lines.  .By  assuming  that  the  relative  chemical  abundance is constant 
with height,  and  recalling  our  assumption  that all magnesium,  calcium, and  silicon are in  the 
ground  state of the singly  ionized  ion  for 500 < h 1250 km, we can  use 

to  estimate  the  ratio of optical  thicknesses  in  different  lines. Equation  158  follows  immediately 
from  the  variation of T~~ with Koj = a. nLj  . Subscripts "i" and " j "  refer to  different  lines. If 
we know T~ ( h )  for  one  line, we can  find it for  the  others. 

If we examine  Table 1 to  estimate T~ ( h )  for  Lya, we  find that a reasonable f i t  to  the few data 
points is obtained by the equation 

This is illustrated  in  Table 20. The f i t  is adequate  for  our  purposes  in  the  region 500 < h < 1250 
km, though we are not  justified  in  using  Equation  159  for h > 1250 km, where  we shall actually 
treat Lya itself. The scale height  corresponding  to  Equation  159 is 145  km,  the  value  we  chose 
for p ( h )  in  the  region 500 < h < 1250 km in  Section A of this chapter. 



Table 20 

Comparison of T~~~~ vs h from PSC Model 
Chromosphere with Our 

T O L y a  
( h )  = 10[3 X l o - '  ( 3  X 1 0 '  - h ) l  

from Equation 159. 

- 
1 x 107 5.6 x lo6 

2 x 106 1 x 106 

3 x 105 2.5 x 105 

1250 2 x 105 1.8 x 105 

1300 7 x 104 1.3 x 105 
I I 

For  the  number  density n L j  (h )  , which 
appears  in Equation  158 for T~~ , we use  

where n1 (500) = 8.07 X 1013 corresponding  to 
Equation  120  for  no  hydrogen  ionization  and 
mean  molecular weight unity  in  the  region 
0 5 h 5 500 km, and ( n L j  / n l )  is obtained 
from  the  relative  abundances of Table 10. 

We should  mention  that  there is some  inconsistency between our  adopted  scale  height of 145 
km for  the  region 500 < h < 1250 km and  Zirker's (1956)  value of 200 km at a height of 500 km, 
slowly  increasing  to a value  just  under 300 km at a height of 1500  km. (This  latter  value is highly 
uncertain  due  to  scatter  in  the  data.)  Zirker's  results are based  on his study of lines  from  singly 
ionized  metals.  Even if we assume that his results give H, = 200 km  throughout  the  region 500 
< h < 1250 k m ,  we  note that this gives  densities at 1250 km which are 6 t imes as great as those 
obtained  with H, = 145  km  in  Equation 160. We use  the  smaller  scale height for  greater  consis- 
tency  with  the  PSC  model of the low chromosphere, noting that our previous  conclusions  drawn 
from  Zirker's  work  concerning  single-stage  ionization of the  metals do not strongly depend on 
scale height. 

In Table  19,  the last column gives  values of E computed  from 

e-hu/kTe)  

which is given in  NETPRF and is derived by combining  the  definition of E in Equation  27, CLU 
from Equation  115, %,, from Equation  155,  and  Equation 43 connecting C,, and C,, for a Max- 
wellian  electron-velocity  distribution. We use ne = 10 l ,  Te = 10 4, and i = 0.2 to  derive E for 
singly  ionized  metals. 

To  estimate the fractional  part of the  mechanical  energy going into  the j -th  energy  sink (which 
is equivalent  to  estimating  the  quantity O j  ( h )  for  the  four  lines we consider  here),  substitute 
Equation  160 for n L j  ( h )  into  Equation  117  for A, ( h )  , use i = 0.2, and  approximate  the  net- 
collisional-bracket by (NCB)L,j = 1 to  derive  the equation  to  be  solved  for A, ( h )  , which is 
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j" 1;  The g = 0.2 value is very good for  the three singly  ionized  metals  and is somewhat  too  large 

f i estimation of A, ( h )  fo r  Ha (van Regemorter, 1962). Since  the  values of A, (h)  for H a  are less 
for  Ha,  introducing a temperature-dependent  error of about a factor of 2  which will give  over- 

than  or  equal  to  the  values  for  the  other  principle  mechanical-energy sinks, this e r r o r  is not 
serious. 

rJ 

Consider  the  assumption (NCB),, = 1. For   Ha,  this demands that b, << b, . Although b, 

< b, for 500 < h < 1250,  we  offer no proof that b, << b, for this region.  The  Pottasch and  Thomas 
(1959)  study  does not apply  in this region as  it was done for Te = lo4.  Athay  (1966) reports  that 
(NCB),,.= 1 is justified  here,  and  offers  some  estimates of b, made by Henze  which support this 
view. We assume that (NCB),, = 1 in our calculation of A, (h)'S. 

Regarding  the  singly  ionized  metals, Athay  (1966) notes  that  the  product nL q, for  the MgII 
resonance doublet in  particular  may  exceed  the  same  product  for  Ha by as much as two orders  of 
magnitude at h = 500  km. He also  notes that higher  opacities  in  singly  ionized  metals at a given 
height h should  make  the bk's of the upper  and  lower  state  approach  each  other  higher  in  the at- 
mosphere, which is reasonable.  Thus,  allowing  that (NCB),, = 1 where T,, is sufficiently  small  for 
all these  lines, we would indeed  expect (NCB),, to  approach  zero  (or  depart  from  unity)  higher  in 
the atmosphere  for  these  ionized  metal  lines  than  for Ha. How then  do we justify  assuming (NCB),, 
= 1 for  ionized  metals  over 500 < h < 1250 km without a detailed  separate  study of these lines, 
when we  have every  reason  to  believe  that this may  be  completely  wrong  for  the  lower  part of this 
region? We do so  because our results obtained  in the next  section  with this assumption tell u s  
that,  for  any  reasonable  value of the  mechanical-energy  input  obtained  from the weak-shock  theory, 
T~ ( h )  in this region lies well  below the  PSC  values,  and  that  letting (NCB),, approach  zero  mid- 
way through the region will not raise  the  temperature.  Thus, as we shall argue  presently,  either 
more  mechanical  energy is being dissipated  in  this  region  than  the weak  shock  theory  gives,  or  the 
meta ls   a re  not mostly  ionized  in  this  region, or  severe  departures  from  spherical  symmetry are 
encountered  in this region.  Some  combination 
of these  effects  might  also be encountered.  The 
point is that this conclusion is independent of 
how the (NCB) ,, varies  in  the  region 500 < h 

< 1250 km. 
So we  perform  the  calculation of the A,'S 

using Equation  162  and  the  temperature distri- 
bution of the  PSC  model of Table 1, and  exhibit 
the  results  in  Table 21. These are interesting. 
The  temperature  dependence of the A, ' s  for 
CaII  and MgII for the temperature  range  con- 
sidered is rather weak,  with  variation of less 
than a factor of 2  for CaII and  effectively  no 
variation  for MgII. Thus  the  entry of T= into 
Equation  162 does not  affect the grosser  results 
of Table  21,  except  for  the  case of Ha. The two 

Table 2 1  

Values of Fractional  Apportionment  Coefficient A, 
for Four Predominant Lines in  the  Region 

500 < h < 1250 km. T e  (h) is from Table 1. 

h 'e 
~ 

500 

750 

6150 

7040 950 

6840 850 

6650 

1000 7150 

1100 7400 

1200 7700 

1250  7901 
." 

A" a 
" 

0.0154 

0.0483 

0.0705 

0.1017 

0.1200 

0.1660 

0.2218 

0.2547 

%a1  I 
~~ 

0.4389 

0.3851 

0.3573 

0.3311 

0.3195 

0.2861 

0.2502 

0.2420 

%I  I  

0.5417 

0.5602 

0.5652 

0.5590 

0.5522 

0.5385 

0.5178 

0.4922 

0.0040 

0.0064 

0.0070 

0.0082 

0.0083 

0.0094 

0.0102 

85 



dominant  metal lines also  greatly  dominate SiII,  which is not  surprising at these  temperatures. 
Finally,  the  lower  region,  where  the  assumption (NCB),, = 1 is most  in  error  for  the  metal   l ines,  
is also  the  region  where AHa is smallest,  reducing  the  possibility that the  energy  delivered  to  the 
two  dominant  metal  lines is a small  fraction  here. 

We conclude  that MgII, CaII,  and Ha are important  energy sinks for  the  region 500 < h < 1250 
km. SiII may not  be  negligible at some height  above  1250 km but it certainly is below  1250 km. 

The  final  region  where we calculate T~ is h > 1250  km. Here, Lya of hydrogen is important. 
We showed earlier that we  could  exclude Lya  from  the  region of the  singly  ionized  metals  where 
the PSC  model  says T~ 5 8000" and T(LYC) 2 10  for h 5 1250 km. At some  higher h, where b, > b, 
SO that 0 < (NCB) , $ 1, the  product n1  C, (NCB), ( h v )  , for  Lya  becomes  predominant. If we use 
n1 = 1011, ne = 1011, T~ = 104,  and c,, = 5 X 10-2  from  the Henze table  for  these  conditions, we 
obtain n1 c,, (NCB),~ (hv) , ,  2: 0.08 e rgs   cm-2   s ec - l ,  which is even larger than D(h) in this upper 
region,  according  to  our  weak-shock  theory.  However,  uncertainties  in  our T ~ ,  n e ,  c12, and 
(NCB) in  the  upper  region could account  for  this. We merely  note  the  support given our as- 
sumption that Lya of hydrogen  should  dominate  the  energy  balance  in  the  region  immediately 
above,  where  the  singly  ionized  metals a r e  important. 

Our  further  assumption  that we may  ignore  Lya of HeII, ~304, is supported by the  calculations 
of Zirker (1960) already  mentioned,  using  the  admittedly  questionable  PSC-model  upper  chromo- 
sphere of Table 4 for which T, ( h )  < 50000". Further  support is provided by the  disk euv observa- 
tions  reported  in Athay (1966) showing Lya of HeII to be  negligible. On these  grounds, we include 
only the  Lya  line of hydrogen in our temperature  calculations  for  the  upper  region h > 1250 km. 
Our  results  support  the  assumption  that  Lya is formed  in a region  for which T= < 50,000". 

C. The Chromospheric Temperature  Calculation 

Our  calculation of the  temperature  distribution is divided  into three parts,  corresponding to 
three  different height regimes  in the chromosphere.  In what  we call  the "low chromosphere,''  we 
make  separate  calculations  for two subregions: 0 '< h 5 500 k m ,  which  we call the H-  region,  and 
500 < h 1250, where we calculate  the  temperature  distribution  from  the MgII and CaII resonance 
doublets.  The  third  region  for which  we calculate  the  temperature  distribution  lies at heights  above 
1250 km. We extend this last calculation up to  small ~ ~ ' s  in  Lya. 

1. Tempevature Distvibution fvom H -  in 0 5 1% 5 500 k m  

This  calculation  employs  the  values of b - obtained  in  the  previous  section  (Table  13)  and is 
therefore  subject  to  the  assumptions upon  which these b - values  are based.  These  assumptions 
a r e  1) that we can  ignore  the free-free H-  opacity  and  induced  emission;  2) bH 2 1; 3)  the  PSC 
model  chromosphere of Table 1 gives the best  available  representation of (nH,Te) for  this  region; 
3) D - = 1.3 x 10-9 cm3  sec - 1  is the  best  available  value  for  the  associative  detachment 
reactlon-rate  constant; and 4) Equation  138,  which states that Sc = (bH-)- l  B~ (T,), is a good repre- 
sentation of the continuum source function. We have already  discussed  assumptions 1, 2, and 3. 

H 

H 

H.. H 
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This  leaves  assumption 4,  which is rigorously  true only if  H -  is-the dominant  source of 
opacity. We have  already  noted  that this may not be  true  for h 2 400 km,  because of the  Paschen 
continuous  opacity. In particular,  Frisch (1967) claims  that  above 400 km the  Paschen continuous 
opacity is predominant;  she  offers this as the  reason why the Cayrel  mechanism is not effective 
in  heating  the low region  above 400 km,  since  for b, = 1 the sc of Equation  163  (below) approaches 
the  Planck function B~ ( T, ) as the R, , term  becomes  predominant. 

To determine the effect of the  Paschen continuum on our continuum source function sc ,  we 
note that, with  both H- free-bound  and  Paschen  continuous  opacity  considered, sc can  be  written 

' c  = bH- + ' b 3 R 3 , f A  R 3 , f b  

where '3, f b  = (.; fb/";- aH-, f b )  . If We assume  that b, = 1 for 0 5 h 5 500 km, and  evaluate 
R , ,  f b  from  PSC, which gives 

4 x 1015 ~ 3 / 2  e-(x13txH-) 

" e  

e 

'3, f b  - 
" 

we can  evaluate the quantity (1 + R, , b),/(bH- + R , ,  ,,) = SJB, (Te ) to  determine  the  effect of the 
Paschen continuous  opacity  on the  source function in  this  region.  Using the PSC model of Table 1 
for (ne,T,) once  again,  and b - from  Table  13, we compute R , ,  f b  and (1 + R , ,  fb)/(bH- + R , ,  f b )  , 
giving the  results  in  Table 22. For  comparison we include ( bH-)- '  , which equals SJB, (T,)  when 
R , .  equals  zero. 

We see  immediately that, for  the PSC  model, we can  conclude  that H -  continues  to  dominate 
the  opacity  out  to 500 km,  and that the continuum source function sc is well represented by 

Table 22 

Values of R , ,  f b  and  Related  Quantities  to  Illustrate Sc 
Dependence  on  Paschen  Continuous  Opacity. 

h (b) 

0 

100 

200 

300 

400 

500 

~" ~ .. ._ 

10" ne 

( ~ r n - ~ )  

6.36 

5.04 

4.65 

4.58 

4.63 

4.72 

-. . 

~ 

T e  ("K) 

5050 

5250 

5460 

5680 

5910 

6150 

~~ ~ ~ ~~~ 

'3. f b  

3.32 x 10-4 

1.37  (-3) 

4.72  (-3) 

1.47  (-2) 

4.29  (-2) 

0.119 
~" 

b -  

1.06 

1.18 

1.37 

1.65 

1.94 

2.24 
- 

+'3, f b  

bH- i- R 3 b f  

0.943 

0.848 

0.731 

0.610 

0.526 

0.474 

P"-) - 
0.943 

0.847 

0.730 

0.606 

0.515 

0.446 



We  now use  the b - (h)  of Table  13  along  with  the  approximation s, = (bH-) - l  B.(T.) to  cal- 
culate Te ( h )  in  the  rlgion o 5 h 5 500 km. Our  conservation  equation  for this region  becomes 

h (h) 

0 

100 

200 

300 

400 

500 

I- -. 

Table 23 

Values of Te (h) for 
0 5 h 5 500 km. 
- 

K *_ (cm-l) 
H 
" 

6.31 x 10- l '  

1.87 (-11) 

6.66 (-12) 

2.64 (-12) 

1.09 (-12) 

4.71 (-13) 

~ 

b -  
H - 

1.06 

1.18 

1.37 

1.65 

1.94 

2.24 
- 

Te (OK) 

4980 

5090 

5320 

5655 

5985 

6285 

T e (PSC) (OK) 

5050 

5250 

5460 

5680 

5910 

6150 

this is exactly  like  Equation  145,  which we used 
to  estimate  the  excess of emission  over  ab- 
sorption  in H- ,  except  that  here we identify the 
left-hand side with the  local  mechanical-energy 
input. D (T,) is always  given by Equation 84. 
Using the same K *- and b - as in this last  
section, and Teff 5800" :gain, we calculate 
the Te ( h )  given in  Table 23,  which includes 
Te ( h )  from  the  Table 1 PSC  model  for  com- 
parison.  Commensurate with  the  uncertainties 
in D(T,) , the  agreement is quite good. 

This  temperature  calculation  offers only a 
consistency  check  on  the  temperature  distribu- 

tion of the PSC  model  and  does not prove this the  best  model  available  for  the low chromosphere  in 
the  light of current  observations.  Nevertheless,  in  spite of our  disbelief  in a boundary temperature 
as high as 5000°, this is as reasonable a distribution as we know to  date  for 0 5 h 5 500 km,  and it 
leaves unchanged the PSC  conclusion that there is an  appreciable rise of the  order of 1000" in  the 
first 500 km. 

Here, we apply the method of Chapter I11 to  calculate  the  temperature  distribution  in this upper 
portion of the  lower  chromosphere. We have already shown that MgII and  CaII are  the  predominant 
mechanical-energy  sinks  among  the  singly  ionized  metals  studied  in  Section B of this  chapter. Si11 
was shown to  absorb 5 1.0 percent of the  mechanical  energy as long as T, 6 8000". H a  was shown 
to  be  an  important  mechanical-energy sink, but because  the  source function for Ha is of the photo- 
ionization  type  discussed  in  Chapter 11, we shall  restrict  the  temperature  calculation  to  the  reso- 
nance  doublets of MgII and  CaII,  for  which we assume a two-level  atom  source  function of the  form 
of Equation  30, 

for which the  solution  to  the  transfer equation is particularly  simple. 
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Table 24 

Calculated Values of Mechanical Dissipation Term ( 2/Aj ) (Dj/nLj ) for CaII  

and MgII with Local Values of Selected Representations C j  e - P j T o j  

from Equations 166 and 167. 
. " - . . - 

~~ ~ _ _  

1100 

1200 

1250 

7.50 x 10-15 

1.16 x 10"' 

2.57 x lo-" 

3.83 x lo-" 

4.29 x 10" 

4.94 x 10-11 

5.30 x l o - "  
5.42 x lo-" 

As a preliminary  to  the  calculations, we substantiate  the  claim , made  in  Chapter 111, that we 
can  represent  the  line  source  function. s t  in  the  form 

for both the MgII and  CaII resonance doublets. In terms of the  parameters of Section B of this 
chapter,  this  means  that Equation 99, 

must be fulfilled,  where  the " j "  refers   to  a particular  line. We can  easily show that this represen- 
tation is possible.  Table 24 compares (2/Aj ) ( D ~ / ~ ~ ~  ) with cj exp {-pj j }  for MgII and CaII. The 
Aj are obtained  from  Table 19. The D~ a r e  obtained  from  Equation 81 and the oj of Table 21. Fi- 
nally,  the n L j  are obtained  from  the  assumptions of constant  chemical  composition  with  height, US- 

ing  the  relative  chemical  abundances by number  in  Table 9, and a density  scale height of 145 km, 
where we assume all hydrogen  to  be  neutral at h = 500 km  and all magnesium  and  calcium  to  be  in 
the  ground state of the  first  ionization  stage  throughout 500 < h < 1250 km,  to obtain  absolute Values 
of n L j .  The  values of cj and p j  used  for the CaII and MgII resonance  doublets,  respectively, are 

For CaII For MgII 

cj 4.2 x 10"O 5.7 x 10-11 

p j  10-2.7 10-3.4 



Substituted  in ce-pro , these  give 

[ce-fir0] C a I I  = 4.2 x e 
-(l0-2. 7 )TO(CaII) 

and 

Table 24 amply  justifies our choice of (cj ,p j )  for  each  line.  Equations  166  and 167 are now used 
to  calculate  the  temperature  distribution. 

First we solve  the  transfer  equation  for  each  line  in  the  manner  outlined  in  Chapter 111, to 
derive 

for  each  line. We use  Equations 166  and  167 in  the  source  function,  which is of the  form  100  in  the 
transfer equation. We shall also solve  the  transfer  equation  for a second  set of c j  e-'j ro j  for  each 
line,  for  reasons  that  appear soon. This  second set is 

and 

The  actual  solution of the  transfer  equation  follows  the  method  outlined  in  Chapter 111 and 
developed  in  detail in Appendix C. The  results are 

- 2.830 x 10 
-7-.0195r 

- 0.8772 x 10 
- 6 - . 0 0 0 8 6 8 r 0  

- 1. 2929 x 10 
-6-.000041r for CaII,  corresponding to Equation 166 ; (170) 
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ai Ji = 2.513 x 7.895 x lo-'-. 2 8 6 T o  + . . .  - 

i 

- 1.187 x 10 -7-.0195To - 
3.3529 x 10 

- 6 - .  0 0 0 1 7 4 ~ ~  

f 3.2396 x 10 -6-.000041r 0 f o r  MgII, corresponding to Equation 167 ; (171) 

3 

ai J i  = 2.497 x - 1.660 x 2 8 6 T o  + 
i 

- 2.586 x 10 - 6 - . 0 1 9 5 ~ ~  - 8. 772 x 10-6-. o o o e . 6 8 ~ ~  

+ 9. 263 x 10 -6-. 0 0 0 0 4 1 ~  
f o r  CaII, corresponding to Equation 168 ; (172) 

and 

+ 3.4629 x 10 
-5-.000041T for  MgII, corresponding to Equation 169 . (173) 

To  obtain a temperature  distribution  from these solutions,  rewrite  Equation  119 

where  the  sink  term s = E t 7 becomes s 2: E for  the CaII and MgII resonance  doublets. To obtain 
Te (h) ,  we use  the T~ ( h )  relations  for  these  doublets  derived  in  Section B and  given  in  Table 19. 
The results of the  temperature  calculation are given  in  Table 25. 

To  interpret  Table 25, note  that Te (1) and T, (1 )  both  correspond  to  the set of 
parameters  represented  by  Equations  166  and  167, i.e. , the initial set obtained  from all the as- 
sumptions  and  estimates  made so far. On the other hand, the Te ( 2 )  and Te (2) corre- 
spond to  the set of parameters  represented by Equations  168  and  169,  which differ from  the first 
set in that the coefficient C has  been  increased by one order of magnitude. 

C a I  I M g I I  

C a I I  M g I I  

91 



Table 25 

Results of T e  (h) Calculation €or 500 h < 1250 l un  Based  on Ca17 and MgD 

Resonance  Doublets. T 
e c 2 )  and T " B I I  

(1) Correspond  to  Equations 

170 and 171. Te (2) and T e  I I (2) Correspond to 
C S I I  

Equations 172 and 173. 

600 

7476 5624 3.99 X lo3 6024  4413 4.91 x lo2 750 

7029  5412 1.12 X lo4 5783  4360 1.38 x l o 3  

1000 

6745  5187 1.78~ 10' 6271 4501 15.5 1250 

7038  5364 7.10~ 10' 6279  4512 87.3 

We first note  that  the  temperatures  obtained  from  the first set  of parameters are too  low, 
particularly  for CaII. Even i f  our value of 6285" at 500 k m ,  obtained  from  the H - calculations, is 
somewhat  high, it is not  reasonable,  in  the  light of everything we  have  done so far, for T= at that 
height  to  be  much below 6000°K. Retaining our spherically  symmetric  model  for  the  moment, we 
see  three  possibilities: 1) The  parameter E may  have  been  overestimated.  Equation  119 with 
s = E << 1, shows  that, i f  E were  smaller,   the  term [ (1 t E ) / € ]  . c exp would be  increased 
without  change of parameter C. 2) We may have underestimated  the  local  mechanical  dissipation, 
owing perhaps  to a breakdown of the  weak-shock  theory.  3)  Our  assumption that all magnesium 
and  calcium  atoms are singly  ionized  in this region  may be  wrong.  Both alternatives 2 and  3 
would require  that  the  parameter C be  increased. To verify this, see Equation 99. We consider 
these  possibilities  in turn. 

Since  the  values of ( n e ,  T,) = ( l o l l ,  l o 4 )  , which  we used  to  estimate  the  values of E for these 
lines,  give  slightly  smaller  values  than would be  obtained  from  any  combination of (ne ,  T,) taken 
from  the PSC  model of Table 1, this would at least  partially  compensate  for any e r rors   in  Equa- 
tion  161,  used  to  obtain E .  Also, i f  we look at Equation  170,  which is our 

for CaII for  the first set of parameters (C,p), we note that there is a monotonic  outward decrease 
of the  radiation  field, which does not appear  in  the  other  solutions,  Equations  171-173,  until  some 
distance  out  in  the  atmosphere has been  reached.  This  lack of an  increase  in 
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is not  compatible  with  the  observed  emission 
core  in  the line profile of the H and K lines 
seen on disk  spectra.  Increasing E will not 
change this, but a sufficient  increase  in the 
parameter C will, asillustrated by the  solution, 
Equation  172, for  these lines, where ~ n l y  C 
has changed  among all the  parameters. 

On these  grounds, we reject the  possibility 
that   an  error  in E is responsible  for  our low 
T, ( h )  values  obtained  with  the first set of 
parameters. 

Table 26 

Values of Local  Mechanical  Dissipation D(h) 
for the  Region 500 < h < 1250 km. 

h oan) 

500 

750 

850 

950 

D(ergs ~ r n - ~  sec  -l) 

0.030 
.~ 

0.010 

0.0058 

0.0033 

h 

1000 

1100 

1200 

1250 

.. . 

0.0013 

0.00074 

0.00055 

We must now consider which of our  alternatives,  2)  or 3) ,  offers  the  more  likely  explanation  for 
the increase  in  parameter  C  needed  to  raise the temperature.  To  determine this, it is useful  to 
obtain  the  mechanical  energy  input D(h) and JD(h)dh for  this  region. D(h) from Equation  81 is 
given  in  Table 26 for  the PSC model  chromosphere  in the region 500 < h < 1250 km. Table 26 
shows  that ID(h)dh for  the  entire  region  yields  approximately  5 x l o 5  ergs  sec-l .   From this 
estimate  and the contribution  from  the  lower H -  region, we find  that  the  total  mechanical  energy 
dissipated below 1250 km is only about 1.5 x 106 e rgs  cm-2 sec -1. The  fact that our  estimates of 
the total efflux of mechanical  energy  from  the  photosphere  give  more  than  an  order of magnitude 
more  mechanical  energy  than this value  shows that there might  be enough mechanical  energy 
available  to  substantially  increase  the  amount of chromospheric heating by shock  dissipation. Also, 
the fact that the shock  strength  parameter 7, becomes a significant  fraction of unity in  the  region 
500 < h < 1250 km (which makes the weak-shock  theory of doubtful validity)  indicates that D(h) 
might  be  substantially  larger  than  the  initial  values we  have  computed. Finally, we recall the 
arguments of Zirker  in  favor of single  ionization  for  these  metals  in this region.  From these 
considerations, we conclude  that  present  evidence  favors  an  increase  in  local  mechanical-energy 
dissipation  over a decrease  in the ionization of the  metals  in this region. In any  event,  either or  
both of these  effects will increase  the  parameter  C,  and this in  turn will increase T, (h), as we 
readily see from T~ (2) and T= ( 2 )  in  Table 25. 

C a I I  M g I I  

The  manner  in which T, ( h )  varies with h presents a further  problem.  For CaII, T, ( h )  in- 
creases with h at least out  to  1000 k m ,  though the  increase is slow. But for MgII, Te (h )  begins  to 
drop  somewhere between  750  and  1000 km. This is not a realistic  temperature  distribution, at 
least not  in  the  outer  part of the  region.  Possibly  our  single  exponential  representation of the 
mechanical  dissipation  in  Equation  100 is inadequate,  and  an  additional  exponential  term  or  terms 
may be required  to  account  for an increase in  mechanical  dissipation  in  the  smaller T,, region. 
An increase  in  p would place  the  mechanical  dissipation  relatively farther out  and  change the  shape 
of the  temperature  distribution. Such an  increase  in P for  the MgII doublet is reasonable,  since it 
is doubtful that the assumption (NCB) Lv = 1 is valid  for this doublet in  the  lower  part of the  region 
in  question owing to the large  optical  thickness,  and beginning to  decrease (NCB) Lu at a higher 
point  in the atmosphere  has  the  effect of increasingp. 
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Also, we  do  not obtain  the  same  distribution T, ( h )  from MgII and  Call  with  either set of 
parameters (C,p). This  means  that our original  conservation Equation 94 is not strictly  satisfied. 
We could  develop an iterative  program  to  obtain a convergent  temperature  distribution  in this two- 
line  region.  This  should  be  done when we have more confidence  in  the  mechanical-heating  term D(h) 

and good estimates  for (NCB),, as a function of r0 for  the  lines. Under present  circumstances, 
this would be  an  unrewarding  numerical  exercise. 

What can  we conclude  about T, ( h )  in  this  region  from  these  calculations?  Obviously, we 
must set bounds to  the  temperature  in  the  region 500 < h < 1250 km. We cannot  find the  tempera- 
ture gradient  without a better knowledge of the (NCB),, ' s .  As a lower  limit, we would choose 
6000°, in  the  light of our H -  study. A s  an  upper  limit, we would select 7500", on the  grounds  that 
this value,  calculated  for  the MgII doublet, is the  peak  temperature  reached  anywhere  in  the 
region. On the  other hand, the  fact that our  analysis  does not  adequately  cover the outer, low T~ 

region  does not eliminate  the  possibility  that T~ may  reach  higher values. These  limiting  values, 
along  with all our  calculated  values, a r e  plotted  in  Figure 4 at the end of this  section. 

A "plateau  effect"  appears  in  the T= distribution  for  CaII, but since this depends  ultimately on 
our  choice of D(h), which is poorly known, this might  be  accidental. Such an  effect is barely  dis- 
cernable  in  the MgII distribution of T, ( h ) .  

3. Temperature Distribution f r o m  Hydrogen Lya for h 1250 km 

We do  not  extend  the  calculations  for the region of the  singly  ionized  metals beyond h = 1250 
k m ,  because  we  have  no  reason  to  believe that the homogeneous low chromosphere  extends beyond 
this height. Indeed, we have already noted the  evidence of House  (1961)  which suggests  that 
spicules  may  originate as low as 700 lun, so some of our  previous  calculations  for  an  assumed 
homogeneous  region  between 700 and  1250  km  may be subject  to  modification  on this account. We 
showed at   the end of Section B of this  chapter why  we should  expect  Lya  to  become  the  dominant 
energy  sink  above  the  region of the  singly  ionized  metals. We now proceed  to  calculate Te ( T~ ) 

from  Lya. 

'The results we  now give  for T, ( T ~ )  from  Lya  pertain  to  heights  above 1250 km. We do not 
attempt  to  relate ro to h because  our knowledge of this upper  chromospheric  region is too  poor. 
We shall refer briefly  to  the PSC  model of the  upper  chromosphere  for  estimating  parameters  for 
the  Lya  temperature  calculation. 

We start the  Lya  calculation  with a study of the  Lya  source function.  Using  Equation  161 for 
E ,  with the  mean Gaunt factor g given by 0.034 for T~ = lo4 and 0.124 for Te = l o 5  from  the van 
Regemorter (1962) study, we obtain  for E :  

ne = 10'0, 1011) 

E = 1.28 x lo", 1.28 x , 

T, = lo4 J 
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ne = 10'~. 101' 

E = 1.48 x 1.48 x 

T, = 105 

We make  the  temperature  calculation  for both E 2: and  The  value  corresponds 
more  closely  to  the  upper  chromospheric  model of PSC. 

Evaluating  parameter 77 from Equation 33 gives 77 = 4.3 X , where Tr = 6900"K, Tr 

= 6000"K, and  the  dilution  factor wK1 equals 1/2. Thus, we conclude  that,  even  for ne = 10" and 
E = 10-6 , 77 >> E is a good approximation. 

So far, we have  reproduced  the  results of Morton  and Widing (1961). The  approximation 
E B , ( T ~ )  >> TB* is more  marginal  for our purposes  than  in  their  case,  because  they  overlooked  the 
possibility that Te may  be as low as l o 4  at the  base of the Lya  region, and considered only Te 
- > 2 X l o 4  for which E B ~  (T,) >> TB' is liberally fulfilled.  Using T~ = 6900" again, we obtain TB* 

as 0.1574 . exp(-yl)/y, using  Equations 33 and 34 and  evaluating  the  atomic  constants.  This  yields 
TB* = 8.06 X The  worst  possible  case  for E B ,  (T , )  corresponds  to ( n e , T e )  = ( l o 1 ' ,  l o 4 )  , 
since ne x 1011, T, 2 104 at the base of our  Lyu  region.  For  these  values, EB, T, = 2.04 X 

Thus, at worst, E B ,  (T,) x 2.477~'. Indeed,  for T~ = 1.2 x 104, we already have EB,(T.) CL 14.0 T B * .  

Therefore, we adopt  the  approximation EB, (T,) >> TB* , and  our results show that this is reasona- 
ble. The  source function for Lyu is indeed of the  form given by Morton  and Widing and discussed 
in  Chapter 11, namely, 

When the  expression  for Sx of Equation 35 and the form  in Equation 100 are equated, we again  ob- 
tain the equation for Te in the form of Equation 119, only now the  approximation s = 77 is used  for 
the sink  term. 

Proceeding  exactly as with MgII and  CaII,  we first obtain  (C,p)  from Cj exp {-Pi To} - - (2/Aj)Di/nLj , where " j "  now refers to  Lya.  For  Lya, Ai = 0.059. We obtain Dj from Equation 
81, where we assume that D~ = D in this upper  region.  To  calculate D, we  need the  density  scale 
height for h > 1250 km. We approximate this by the  emission  scale height for Paa of HeII at A4686, 
reported  in PSC as 2.22 X lo8  cm. We also  need p(h = 1250 km), so that we can use 

p( 1250) e 
- ( h - 1 2 5 0 ) / H 3  

H, = 2220 km , 

to  obtain the absolute  value of p ( h )  at a given  height. For ~ ( 1 2 5 0 ) ~  we use  Equation 131 which 
estimates p(h) for the low chromosphere  above 500 km. We obtain ~(1250) = 8.0 X gm  cm-3. 
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Table  27 

Estimates of Neutral  Hydrogen  Densities for the  Upper  Chromosphere. 

T I "Cl 

1500 

106-107 106 0.20  20 42130 3000 

105-107 104-105 0.43 43 36550 2000 

105-107 103-104 9.5 x 102 ' 9.5 23440 

Corresponding  roughly  to the two values of the  shock  strength 77, = 0.5, 1,  there are two different 
values  for  the  mechanical  energy input D, one an order of magnitude  higher  than  the  other. 

To derive nLl ,  we solve  the  Saha  equation  for n; 2 [n ( n e u t r a l ) ]  * . Then we estimate  values 
for  the  departure  coefficient b, in  the  upper  chromosphere  (using  the  Table  4  model of the  upper 
chromosphere)  and,  from  these,  estimate nL1. The  Saha  equation  for  hydrogen  can  be  written 

4.11 X 10"~- e 
" e  nP 1 5 7 .  OOO/Te 

Te3I2  

If we solve  for n;, we obtain  the  results  tabulated  in  Table 27, assuming np = ne for  the  calcula- 
tion. There  we  also  give  our estimates of b, obtained  from  the  early  Thomas (1948b) and  the 
previously  mentioned  Thomas  and  Pottasch (1959) studies of b,. From  Table 27, we conclude that 
nLl lies in  the  range  10 - 10 in  the  upper  chromosphere. 

There is considerable  uncertainty  in  the  values of the  parameters  (C,p>  to be used  to  represent 
the  term ( 2/Aj)  D~ /nLj  for  Lya.  These  uncertainties arise from the high  approximate  values we 
must  use  for  the  mass  density p(h), the  neutral hydrogen particle  density nL 1, and the  shock 
strength  parameter T ~ .  One way to assure a reasonable  estimate is to  demand that the  mechanical 

Table  28 

Temperature  Distribution as a Function of T~ (Lyu). 

1 
c ,  = 10-11 

9,865 

12,225 

11,995 

11,928 

11,851 i c ,  = 10-10 c, = 10-10 c,  = 10-11 

12,205 

21,970  15,397  15,397 

22,151 15,527 15,52  7 

22,480  15,640  15,640 

23,368  16,035  16,035 

16,000 12,205 

96 

. .  



energy  input  corresponding  to  the  chosen  values of ( C , p )  must  equal  the  net  radiative  loss  inferred 
from  the  observed  Lya  line  profile.  The  net  flux  per C.P.S. and  steradian is given by Jcexp{-,bo cb0} 
between  limits 0 and m. Multiplying by 47~) A, 1 = 4nc 1 M / / X 2  , where 
maximum,  gives an estimate of the  net  flux  in  ergs  cm-  sec-l . 

If we represent  the  expression c exp { - .@r0)  for  Lya by 

M I  is the  line  width at half 

we can  estimate  the  net  flux  for  each  set ( C , p )  in  the  manner  just  prescribed.  For (C,,B) = ( lo-"  , 
7, of Equation 178, we obtain 1.28 x l o 5  ergs  cm-2  sec-I .  For (C,P)  = ( l O - ' O ,  10 - 2 .  7, of 

Equation  179, we obtain 1.28 X l o 6  ergs  cm-2  sec".  In both cases,  we have  used I M h l  = cm 
= 1A. The  Hinteregger  (1964)  observed  flux  in  Lya of 3 X 10 e rgs   cm-2  set" is spanned by the 
above  values.  Since  these  values  also  agree  in  order of magnitude with estimates of ( 2/Aj)  D j / n L ,  , 
based on the  values of p(h), nL1, and 77, already  considered, we accept  Equations  178  and 179 for 
the  temperature  calculation. 

1 1 1 1 ~ 1 1 1 1 ~ 1 1  I I I I  
9000 16000 

8000 

- 7000 L 

%I + 

6000 

Figure 4-Graph of T, (h) obtained from H,CaII, (1,2), MgII (1,2), 
and T, (To) from Lya. 

The  temperature  calculation  proceeds  exactly as before  for MgII and CaII. The  results  are 
given  in  Table  28  and  exhibited  graphically  in  Figure 4. A discussion of all results,  including 
these  for  Lya,  isenow  in  order. 
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Chapter V 

CONCLUSIONS 

i 
E 
f '  In the  lowest  region 0 5 h 5 500 k m ,  we  have  calculated the temperature  distribution  taking 

into  account  both  the  shock  dissipation of acoustic  waves  and the departure of the continuum source 
function  from the Planck function.  The  contribution of this latter, non-LTE effect is determined 
by the  departure  from  unity of the  coefficient b - (h) , whose  values we have  calculated  for  the PSC- 
model  chromosphere. 

H 

Can the  departure of bH- from unity cause the temperature rise in  the low chromosphere with- 
out  any mechanical  dissipation, i.e., in  radiative  equilibrium?  This is the  question  raised by Cay- 
re1 (1963), who concluded  that it is possible  in  the low chromosphere. In the  strictest  sense  this 
situation  does not seem  to be met,  because of the  incompatibility of radiative  equilibrium  and  depar- 
tures  from LTE in  the H- ionization: t h i s  is demonstrated below. 

The  statistical  equilibrium condition for the bound level of H-, expressed by Equation 141, can 
also be written  in  the  form 

The  energy-balance  equation  for H -  ionization  can  be  written 

r 
B, (T,) ayH- d u  - nH- J u  a v ~ -  

where  the  bars  over  the  brackets  mean  the  enclosed  quantities are suitably  averaged  over  energies 
from (hv,) to m. Cayrel,  in  effect,  equated  the  left-hand  sides of these two equations to  zero, which 
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corresponds  to  radiative  equilibrium, as Equation  181  shows.  He  then  solved  the  resulting  equa- 
tions  for bH- and  the  temperature  in  the  chromosphere  corresponding  to a suitable  dilution  factor 
for  the  photospheric  background  radiation  field.  The b,- enters  the  equations  through b,- = nH-/n;- , 
after which nH- cancels out of both of the  equations  Cayrel  used. 

However, Frisch (1966) concluded that b, = 1 for the low chromospheric  region  under  discus- 
sion. When b, = 1, the only time  Cayrel's  equations  are  valid is for b,- = 1, as indicated by either 
or  both of Equations 180 and 181. Thus,  Cayrel's  procedure, which yields b, > 1 (-1.3), is invalid 
in  the low chromosphere i f  b, = 1. It does not seem  possible (is not possible if  b, = 1)for  depar- 
tures  from  LTE  in  the H- ionization  to  exist  in  the low chromosphere  in  radiative  equilibrium. 
Therefore, the temperature  r ise cannot be produced  solely by non-LTE  ionization of  H- in  radia- 
tive  equilibrium. 

2 

2 

2 2 

It is interesting  to  consider  the  relative  contribution of the  radiation  field  and  mechanical- 
energy  input  in  determining  the  temperature  distribution  in  the  light of these  conclusions.  Recalling 
that  we  have  used the symbol D , without subscripts,  to  represent  the  mechanical  energy input in  ergs 
cm-3  sec-I,  we  can  write 

for  the  mechanical input, where b, = 1 has  been  assumed. It follows  directly  from  Equation  182 
that, as b,- increases (bH-  2 l), D increases,  and  vice  versa. So in  that  part of the low chromo- 
sphere  where  H-  dominates  the continuum  opacity, the  non-LTE  effect  corresponding  to a depar- 
ture of b,- from unity  and  the  mechanical  heating of the  gas go hand in  hand. This is exactly  what 
we would expect on physical  grounds. We can  envision a cycle of collisional  and  radiative  ioniza- 
tion (with the  associative  detachment  reaction H + H- - H2 + e dominating  the  collisional  ioniza- 
tion)  followed by collisional  and  radiative  recombination,  where the collisional  ionizations  minus 
the  collisional  recombinations,  representing  the  increase  in  mechanical  energy, are just  balanced 
by the  excess  radiative  emission,  obtained  from  the  radiative  recombinations  minus  the  radiative 
ionizations. 

2 

A comment on the  Frisch (1967) model of the low chromosphere is now in  order. We have al- 
ready noted her  claim  that  the  Paschen continuum  opacity predominates  over  the H- bound-free 
opacity  for h 2 400 km. As she  assumes b, = 1 for  the  Paschen continuum,  the  departure of the 
continuum source  function  from  the  Planck  function is less under  these  conditions  than  in  our 
calculations. 

We have  estimated  the  ratio R, , f b  of the Paschen continuum  opacity to  the H- bound-free  opac- 
ity  in  Table 22, for  the PSC model  chromosphere,  and  the  results show that  this  ratio  reaches a 
maximum of 0.119 at h = 500 km. Why is there such a discrepancy  between  Frisch's  and  our  results? 

It is not easy  to  answer this question, but we  can  make  the  following  observations.  Frisch  states 
that,  above 400 km, the  Paschen continuum  opacity predominates, but she  does not say how she 
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a r r ives  at this. She arr ives  at her f ina l  models by solving a system of rate-process  and  energy- 
balance  equations  plus  an  equation of state. If we  use  the (Pe,Te)  values  from  her f i n a l  models, 

n: compute ne  (Pe,Te) and take Equation 164 to compute R,, fb, we  derive  for her models I, 11, and 111, 
$$ 

respectively: (ne = 3.98 X R, ,  f b  = 0.0045), (ne = 2.67 X , R,,  f b  = 0.142), and (ne = 9.6 
X 10" , R,, f b  = 0.269) at those  heights  nearest  to 400 km among  her  tabulated  values.  Ignoring  the 
first set (which is for  her  zero  mechanical  dissipation  case), we  conclude that her  statement on the 
Paschen continuum  opacity still does not seem  consistent with her  results, which predict  conditions 
similar  to  those of the  PSC  model.  This  conclusion is true  even though her ne  (h)  lie below the ne (h) 

of PSC  in  Table 1, and  we see from Equation 164 that R, , varies  inversely with ne. Her results 
and  Equation  164  support  the  conclusion that the H- bound-free  opacity  dominates the lower  region 
0 5 h 5 500 km. Thus,  we  retain the conclusion that the H- bound-free  opacity is dominant. 

The  reasonable  conformity  between  our  calculated  temperature  distribution  and  that of the PSC 
model of Table 1 tends  to  confirm  the  conclusion  that Te rises at least 1000" from h = 0 to  h = 500 
km. This  suggests a lower  limit of T= 2 6000°K at h = 500 k m ,  a value  lying  somewhat below our  cal- 
culated  value  and that of Table l (6150" and 6285", respectively). We should  note,  however, that we 
have  established only that the PSC model  offers a reasonable  description of the H- region  in view of 
our  results. We have  not, in  any sense,  proved that the PSC model is correct. Nor  have  we  consid- 
ered the possibility that the  type of consistency  test we applied to  the H- region of the PSC model 
might not  apply  equally  well  to  another  model. So the  possibility  that  the  temperature at h = 500 km 
may  lie below 6000°K does  exist, though this higher  value  seems  more  probable. 

The  results of the  temperature  calculation  in  the next higher  region  above 500 km present  sev- 
eral problems.  The  numerical  problem of convergence of the two temperature  profiles obtained 
from MgII and CaII is easy to  solve, with convergence  assured  in  the two-line case, but the  solution 
would offer no useful  information  until a more  detailed study of the (NCB),, ' s  has  been  completed. 
So we shall consider this  problem no further  here.  This  leaves  the following problems: 

I. In  that  portion of the  chromospheric  gas found in  the  region 500 < h 5 1250 km (and as long 
as we  retain  the  assumption of spherical  symmetry  there, this means all the  gas  in  the  region),  we 
concluded that either 1) an  order of magitude  more  energy ( -  5 x 106 ergs  cm-2  sec- ' )  is needed 
to  satisfy Te (min) -6000°K at h = 500 km for  the two lines  treated  than is provided by rough  esti- 
mates of the  available  mechanical  energy  given by the weak-shock  theory, or 2)  the  magnesium  and 
calcium a r e  predominately  neutral  in this  region,  in  conflict  with  Zirker's  conclusions  reported  in 
Section B of this chapter. 

11. The  net  radiative  loss  from  the MgII doublet  corresponding  to the first set of the  heating 
parameters (C,P) agrees   to  within a factor of 2 with Osterbrock's (1961) estimate of 2.5 X i o 5  ergs  
cm-2  sec- ' , thus  placing it about an  order of magnitude  above the observationally  based  Osterbrock 
value  for  the  second  set of (C,p), which represent  more heating. 

III. The  net  radiative  loss  from the CaII doublet is significantly larger  in  calculated  than  in 
observed  values,  even  for  the  lower  values of the heating  parameters (C,P). The f l u x  in  H  and K is 
estimated  in the Osterbrock  study as 2104  e rgs  cm-'  sec-',  while the lower  values  for (C,P) cor- 
respond  to > l o s  e rgs  cm-2 sec. 
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IV. The  temperature  gradients  obtained  from  the  line  calculations are wrong-at least in  the 
outer  part of the  region. 

V. Possible  departures  from  spherical  symmetry  have so f a r  been  ignored.  Fredga's (1966) 
spectroheliograms of the Sun in MgII X2802.7 confirm  the  idea  that  most of this  emission  comes 
from  essentially  the  same  regions as the CaK,  emission.  Thus,  severe  departures  from  spherical 
symmetry,  apparently  associated with the  magnetic-field  structure,  are  virtually  assured. 

Let  us  consider  these  problems  in  turn. We have  already  mentioned  the  possibility  that  the 
weak-shock  theory,  valid only for  values of the  shock-strength  parameter 77, < 1 (how much l e s s  
is difficult to  establish),  might  break down for  values of 7,  approaching  unity  in  this  region. If 
this happens, we have  underestimated  the  mechanical  heating,  and  the  correct  value would be  in  the 
right  direction  to  produce  the  higher  temperatures. 

Zirker 's  (1956) conclusion that the  metals should be  singly  ionized  in  this  region  seems  well 
founded, the chief source of error   in   his  study  being,  the  data  from  the 1952 eclipse. Of the two 
alternatives, 1) mechanical  dissipation  in  the  regions  producing  emission  from  the  singly  ionized 
metals  significantly  exceeds l o 6  ergs  cm-2  sec- or,  2) those  metals  are  predominately  neutral 
there, the  former  seems  more probable. 

Consider  the  problems  posed by the  apparent  discrepancy  between  the  calculated  and  observed 
net  radiative  losses  from MgII and CaII. Let  us  examine  the  procedure  for  estimating net radiative 
losses  from  the  observed  emission  cores, as outlined  by  Clearman (1953). It is this  work  to which 
Osterbrock  and Athay ultimately  refer  in  discussing MgII. The  procedure is to  estimate  an  equiva- 
lent width for  the  emission  core as high as the  adjacent  continuum  and  multiply  this by the  black- 
body emission at a temperature  characteristics of this continuum. Clearman  used Tr  =5000". If he 
had  used T~ =5800", this would have  increased  the  predicted flux by more  than 4 t imes  in  the MgII 
resonance doublet. So in  the MgII case, at least, the flux estimate is sufficiently  uncertain  to  raise 
doubts  about  the  reliability of the quoted numbers, though it is unlikely  that  the  observations  could 
give a flux  value of greater  than l o 6  ergs  cm-2  sec-l   for  the  average value  over  the  solar  surface. 
In the CaII case, no e r r o r s  of the  type  just  described  could  possibly  explain  the  vast  discrepancy 
between  the  calculated  and  observed  fluxes.  Here  we  must  examine the possibility  that  the  region 
producing  the  H  and  K  emission  may  be  optically  thin  compared  with  our  estimates  (Zirker, 1968), 
or  that  our  two-level  atom  model  has  failed. 

We could at least  partially  remove these discrepancies by forcing (NCB),, to  approach  zero 
higher  in  the  atmosphere,  corresponding  to a more  realistic  treatment of the  relevant  departure 
coefficients b,. Such an  approach, which  would force  the  mechanical  heating  farther out for  the 
line  in  question  (requiring a change in  the  mechanical-energy input distribution  or a different dis- 
tribution of the other  mechanical-energy  sinks), would also  ra ise  the temperature  in  the  outer  layers. 
Thus, we might  also be able to reduce or  change  the  unrealistic,  negative  temperature  gradient  in 
those  layers. 

Finally,  the  probable  departures  from  spherical  symmetry  indicate a higher  local  value  for 
the  mechanical  heating,  where  the MgII and CaII emission is strong. If 10 percent of the  gas  in 
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this  region  emits  most of the observed flux, the  higher  temperatures obtained from  the  second  set 
of heating  parameters (c,p) are obtained  there,  and the total  mechanical  heating  will not signifi- 

.\I 
#+ cantly  exceed  the  quoted  fluxes  from MglI, though the CaII emission  will still be  too  large  to agree 
I with  observations.  Unfortunately,  the  behavior of the  other 90 percent of the  gas is still unknown. 

To  conclude  the  discussion of the MgII and CaII doublets  and  the  temperature  distribution  cal- 
culated  from  them, let us  ask: what  model  for  the  region 500 < h 5 1250 km is roughly  consistent 
with the  results of our  calculations?  The  preceding  remarks  demand a two-component  model for 
this  region, with  one  component  (producing most of the  emission)  covering  about 10 percent of the 
surface.  In this component,  shock  dissipation,  greatly  influenced by the  stronger  magnetic  fields 
in  the  spicules (which we  identify  with  this  component), could produce  the  necessary  mechanical 
energy  to  balance  the  observed  emission.  The  temperature T~ in  this component  should be 7000" 
f 1000°K. Nothing can  be  said about  conditions in  the  other component-a serious  problem. 

Several  changes  occur  in  the  chromosphere  where  the  transition  to  the  Lya  emitting  region 
takes place: 1) The  temperature  will  begin  to  rise  rapidly above the 6000" - 8000°K values  charac- 
terist ic of the  singly  ionized  metals  region. Such a rapid  rise  begins  in  the PSC-model low chro- 
mosphere  around 1250 km. 2)  Associated  with  this  rapid rise, -r0 (Lya)  will  decrease  rapidly owing 
to hydrogen  ionization.  Thus,  the  condition of detailed  balance  in  Lya,  valid  in  the  singly  ionized 
metals  region,  becomes  invalid,  and  net  radiative  losses  in Lya become  large.  3)  The  dominance of 
Lya is furthered by second-stage  ionization of the  metals MgII and CaII  when Te exceeds 10,000". 
4 )  Helium emission should be  observed  above 1250  km. Significant  helium  emission  in He1 and 
A4686  of HeII (whose resonance  line X304 cannot  be  observed below the  ozone  layer of our  atmosphere) 
a r e  observed  at  and below 1250 k m ,  as shown by the Khartoum  data  reported  in PSC. 5)  There is 
direct  evidence, already discussed,  for  departures  from  spherical  symmetry  above 1500 km,  in  addi- 
tion  to  the  strong  possibility of a departure below this height. 

The  results of the Lya calculation  support  this  picture,  even  to  the  extent of fully  justifying the 
neglect of the  contribution of helium  emission  to  the  energy  balance  in  the  region  producing  strong 
Lya emission. We recall that a temperature of 50,000"K was  required (Zirker, 1960) for  helium 
emission  to  predominate.  Even  the  effect of strong  departures  from  spherical  symmetry  in the Lya 
emission (which  could concentrate  the  mechanical  heating of our  spherically  symmetric  study by 
more  than  an  order of magnitude)  could not raise the  temperature  to this value, in  view of the  re-  
sult showing an  increase of -6000" corresponding  to  an  order-of-magnitude  increase  in  mechanical 
heating. The  greatest  uncertainty  in  the  Lya  calculation,  other  than  that  caused by ignoring  depar- 
tures  from  spherical  symmetry, is the  estimate of the  mechanical heating.  The f i n a l  temperature 
values  should be considered as "ballpark" figures only,  offered  to  illustrate the effects of varying 
the  mechanical  heating  and  the  electron  densities. 

What is the stability of the temperature  gradients  obtained  from  these  calculations? We have 
already noted that the  negative d T e  /dh found at small T~ for all the calculations  above h = 500 km 
(quite  pronounced  for MgII) conflicts  with  the  expectation that, when  one radiator  becomes  an  in- 
effective loss mechanism, the temperature  should rise to a higher  value at which a new radiator 
can  become  effective,  provided that we  maintain a mechanical  input  per  unit  mass of material  that 
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is approximately  constant.  The  quantity D(h)/p  (h) actually  increases  slightly  in  the  ionized  metal's 
region, so we  certainly  do not believe  in  the  negative dTe/dh. 

Ignoring this aspect of the  results  and  considering MgII and CaII to  represent a single  tempera- 
ture  plateau  (or  perhaps two temperature  plateaus), we ask if  the  results  for  these  ionized  metals 
and  the  other  radiators are reasonable as regards  general  stability.  The  general-stability  criterion, 
given in  Chapter II, Section D, is 

where it is convenient to  express E in  units of ergs  gm-1  sec-1. 

Starting  the  stability  study  with  the H- region, 0 5 h 5 500 k m ,  we find that Ei = D (h)/p  (h) in- 
creases  rapidly with  height h and  hence  with  increasing Te , as the  shock  strength  parameter q 5  in- 
creases  rapidly  in  this  region  and D(h)a [T,  (h)]? What can we say  about Eou ? For the  free-bound 
continuum transitions of the H- ion, 

in the notation of Chapter II, Section C. We could numerically  solve  equation 183 for Eout  directly, 
or  we could use  the  estimates of the  excess of emission  over  absorption  in H- from  Table 14. The 
latter  procedure is more  direct. Noting that the  results of Table 14 are  expressed  in  units of ergs  
cm-3  sec- , requiring  that  we  divide  them by p (h)  t o  get  the  net  radiative loss per  unit  mass,  and 
recalling that, for  0 5 h 5 200 km, the  values of Table 14 are  greatly  overestimated, we see  that  
dEou /dT, > 0 is certainly  satisfied  for  the  assumed  density-scale height of 130 km. Since the  big 
jump  in 77, (hence D(h) /p(h)  = E i n )  occurs  for  the  range  in h where  there  are many uncertainties  in 
all the  estimates,  the  possibility  that condition 45 will  be  violated  there is not  too disturbing.  Be- 
yond h 2 200 k m ,  dEin/dT, does not increase  rapidly  and with dEout /dT, > 0,  condition 45 can  prob- 
ably  be  fulfilled.  Since  the  estimate of the  variation of T ,  with h is rough (as is the  estimate of 
excess  emission) it would hardly  be  worth a more  quantitative  study at this point. 

Then  there is the  question of the MgII and CaII region.  Again,  we  shall not attempt  to  calculate 
exactly  where  we  expect  this  region  to begin. We simply  note  that beyond h = 500 k m ,  the  Paschen- 
continuum  opacity becomes  increasingly  important.  This  means that at some height  above 500 km, 
according to our estimates, H- will  cease  to  dominate  the continuum source function  and the  tem- 
perature  determined  thereby.  Also, at some  such height, the  (NCB)LU,  for CaII and MgII will be- 
gin  to  depart  from unity. 

If the  region 500 < h 5 1250 km is a region of singly  ionized  magnesium  and  calcium,  then  the 
form of E o u t  we  must  use is 
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p Since A,, and (hv),, are constants  for  each  line, the variation of E o u t  over 500 < h 5 1250 km is 
/! determined by the  variation of nu , p , and (NRB) ,,. Qualitatively,  we  may  state  that (NRB>,L in- 

creases  from  zero  to unity  through  the  region,  and that nu decreases  faster with increasing height 
h than nL as (NCB),, (1 - b, /bL) increases.  Thus,  since nL and p (h) have  the  same scale height if 
the  metals are singly  ionized,  the  ratio n,/p(h) decreases with  height,  somewhat  offsetting the ef- 
fect of the  increasing (NRB),,. However, Ein does not increase  rapidly  through  this  region.  From 
the  variation  in q s  over the  region, Ein = D(h)/p(h) only increases by about a factor of  2. Thus, only 
a small  increase  in Eo" is necessary  to  satisfy  condition 45. Again,  without  making a quantitative 
study,  we  note that condition  45 is probably  satisfied by MgII and  Can. 

Could Lya possibly  play a significant  role at some  height below 1250 k m ,  where  we  expect it 
to  predominate? We argued  that  Lya  should  be  negligible below  1250 km on the  grounds that the 
optical  depth ~ ~ ( L y a )  is greater  than l o 5  below this height,  according  to  the  PSC-model  chromo- 
sphere of Table 1. For  such  optical  depths,  we  noted that detailed  balance is expected  for  Lya. Un- 
less this  conclusion is in  error,  or  unless  the PSC model  for 7,, (Lya)is  in  error so that  the  upper 
part of the  region below  1250 km  loses Lya radiation, we can  stand by the  conclusion that Lya  losses 
and  the  associated  higher  temperatures  are confined to  the  region  above 1250 km. 

Finally: is the calculated Lya region  thermally  stable?  According  to  Table 27, where nH (h) is 
given  for  three  heights  (in a highly  questionable  upper-chromosphere  model), n H ( h )  appears  to be 
almost  constant  with  height h after the bulk of the  hydrogen has been  ionized. With p(h) almost con- 
stant  in the Lya region  (scale  height  chosen = 2200 km), and (NCB),, = 1 (a good approximation  for 
the  outer  part  where  hydrogen is largely  ionized),  the  variation  in  from  Equation 184 is deter- 
mined  largely by the  variation  in n u .  To obtain this, knowing n L  2 nH , would require a more  de- 
tailed knowledge of the  variation of b, and b, through  the Lya region  than we  have. We merely note 
that, since  here E i ,  is roughly  constant  with  height (77, is assumed  constant.), it may  be  possible 
for dEo, t/dT, > 0 to  be  fulfilled,  thus  satisfying  condition 45. 

It is too  early  to  appraise  the method  offered  here  for  calculating the chromospheric  tem- 
perature  distribution, as compared with the  standard  approach,  namely:  assuming a distribution 
of electron  densities  and  temperatures  for  various  chromospheric'models  and computing line  pro- 
files from the resulting  source  functions as outlined in  NETPRF, after which a comparison of the 
calculated  with  observed  profiles is made  to  select the best model. Our approach  has  been  to 
make a reasonable  guess of the  mechanical  energy  input (which still depends  on  temperature),  and 
construct a source  function  from th is  to  solve  the  transfer equation. From  the  solution a tempera- 
ture  distribution  can be calculated. 

The  former,  standard  approach  has  recently  been  applied  to  the MgII and CaII doublets by 
Athay  and  Skumanich (1968). Since their results are also based on a two-level  atom, but were ob- 
tained after a much more thorough series of numerical  calculations, it will  be  interesting  to  com- 
pare  their results with those  we  hope  to  obtain  from a more  detailed  calculation. In addition, the 
results of the new calculation  should  yield  profiles good enough to  compare  with  observed  profiles. 
Only then  will it be  possible  to  offer a reasonable  estimate of the  utility of calculating the tempera- 
ture  as described  in  this  report. 

I I  
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Appendix A 

The  General l ine  Source  Function 

In this appendix  we  derive,  in detail, the  line  source  function of Equation 25, Chapter 11, Sec- 
tion C. We begin  by  applying  the  very  general  condition of a statistically  steady state expressed 
by  Equation 16 

(16), (A- 1) 

where, of course, n k  is the  number  density of the  k-th  energy  level. (We shall use a double refer- 
ence  number  for  equations that appear  in  the body of the  report.)  From  Chapter 11, Section C, we 
also  have  the following  completely  general  expression  for  the  line  source  function S,, which is 

where j, and &, are the  profile  coefficients  for  spontaneous  emission  and  absorption,  respectively, 
and 

with the  same notation used  throughout  the  report.  Since,  for  reasons  given  in  Chapter 11, Section 
C, the profile  coefficients j , and b, vary  in a similar way across  the Doppler  core of resonance 
lines,  we  restrict  our  treatment  here  to  determining  the  detailed  form  for B, ( T e x ) .  For a detailed 
treatment of the  profile  coefficients,  see  Chapter 111, Part 1 of NETPRF  or the first paper  in the 
Source Function Series (Thomas, 1957). These  references  also  outline  the  derivation of a general 
expression  for B, ( T e x ) ,  s o  this appendix is intended to fill in  some  details  for  readers  unversed  in 
non-LTE  spectral  line  theory. 

The  object of this derivation is to  find a general  expression  for  the  ratio n L / n u  in  Equation 
A-3. This  expression  must  include  the  general  collisional  and  radiation  field  dependence of n L / n u .  

We obtain  such a ratio by applying  the SSS condition  A-1 to both levels (u, L) of the  spectral  line. 
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This  gives 

r 1 

for the upper  level u ,  and 
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L 

r 1 

L J , 

for   the lower  level L. All  quantities  appearing  in  Equations A-4 and A-5 are defined in  Chapter II, 
Section C. In particular, the net radiative  brackets (NRB) a r e  given by Equation 39, the  net  colli- .! 

sional  brackets (NCB) by Equation 44, and CL, (any L and U where L < U )  by Equation 23. Note that 
Equations A-4 and A-5 are equivalent  to  Equation 24 where k becomes  equal to U and L, respectively. ?;,, 
We retain  the convention of including  collisional  processes  that have an  upper  level  in  the continuum '.* 
in  the  middle  term on  the  right-hand sides of Equations A-4 and A-5. 

It is useful  to  introduce  several new quantities at this point.  Though this  appears  to  compli- 
cate  matters at first, these  quantities  have  physical  significance,  and  their  introduction  greatly 
facilitates  our  derivation  and  the  subsequent  physical  interpretation. First, we  replace the ! 



radiation  terms involving  the  continuum by 

noting  that R,, - n, JkC is simply  used  to  represent  P(rad; C, k) - R (rad; k, c )  in  the notation of 
Equation 21. Next, we  introduce  four  quantities  which  couple U and L to  levels  other  than L and u, 
respectively.  These are 

.E.> L 

t# U 
j <L 

(A- 10) 

(A- 11) 

where 6, and 6, represent  terms that depopulate  levels L and U, respectively,  and 6, and 6, repre- 
sent  terms that populate L and U ,  respectively.  These  "indirect"  processes (not  coupling U and L 

directly)  represent a complete set of all indirect  processes  except  for R,, and R C L ,  which  we  in- 
troduced  in  equations A-6 and A-7. To include  these  also,  we  define 

F, = R,, + 6, (A- 12) 

F, = R,, + 6, , (A- 13) 
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following  the  notation of NETPRF. Now we  have  included all indirect  processes  in 6 ,  , 6,, F,, and 
F,. We introduce  no  more new quantities. 

If we  combine  Equations A-4,  A-6,  A-10,  A-11, and A-12, we  can write 

F, = nu [S, + A , , ( ~ ) U L ]  - nLcL, ( N W L ,  . 

In a like  manner,  combining  Equations A-5,  A-7,  A-8,  A-9, and A-13 gives 

F 
\ 

(A-15) i 
I, 

We express A-14 and A-15 i n  a slightly  different  form by noting that 

(A-16) 

for 3, = 4,, which  we assume  throughout,  and 

Equation A-16 follows  from  Equations 21 and 36. Equation A-17 follows  from  Equations 22 and 40. 
Substituting  Equations A-16 and A-17 in  Equations A-14 and A-15 gives  the  equations  to  solve  for 
n u  and n,: 

(A-  18) 

(A-  19) 

These two equations  express only direct  processes  between  levels U and L except  for  the  terms S I ,  

6 ,  , F,, and F,. In addition,  the  net  brackets  for  the  direct  processes no longer  appear. We solve 
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for  n u  and nL by determinants. This gives,  for  the  ratio nL/nu: 

(A-20) 

We obtain a long expression  for B u  ( T e x )  by substituting  Equation A-20 in  Equation A-3. Now recall 
the  relations  among  the  three  Einstein  coefficients A,, , B,, , and B,, expressed by Equations 38 and 
reproduced  here: 

Also recall  that, for a Maxwellian  electron-velocity  distribution,  we  have shown that 

Using  Equations A-21 and A-22 in  the  expression  obtained  for Bu ( T e x )  by substituting  Equation A-3, 
we  arrive at 

We need only consider the third  term  in  the  denominator. 

First, note that 

(A-23) 

(A-24) 
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where  the  term  in  parentheses is identical,  except  for a sign  change,  to  the  second  part of the 
third  term  in  the  denominator.  Thus, 

(A-  2  5) 

Now consider  the  defined  quantities  we  introduced  in  Equations 27 - 29 in  Chapter II, Section 
C. We reproduce  them  here: 

E = - (1 - e-) , 
cu L 

AUL 

Using  these  definitions  and  Equation A-25, we can  write  Equation A-23 for B, (Te,,) in  the  desired 
form : 

The  derivation is completed. 

A brief  discussion of the  physical  significance of the  terms  appearing  in  Equation A-29 has 
been  given  in  Chapter II, Section C. For a more  complete  discussion of the  physical  interpretation 
of Equation 29, see  Chapter 111 of NETPRF. 
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Appendix B 

Special  Solutions to  the  Transfer Equation 

In  Chapter Ill, where we derived  the  method  for  making  the  calculations, we deferred  to  this 
appendix  the  details of deriving  and  solving  the  basic  differential  equation of the  problem,  Equa- 
tion 105. We do this now, starting  with  the  transfer  equation  in  the  form 

Operating on  both sides of Equation B-1 with . . * dp,  we obtain 

provided  that s, is not a function of p = COS e .  Now we introduce a new auxiliary quantity K, ,  de- 
fined by 

With this  definition,  Equation B-3, we  can  operate on Equation B- 1 with J p  . . . dp to  obtain 

where,  again, we assume  that S ,  is not a function of p. 

Now we  introduce  the  Eddington  approximation  we  use  here, by replacing  the p2 in  the  integral 
of Equation B-3 by its mean  value,  namely 1/3. This immediately  gives 

This  approximation  ignores  the  anisotropy of the  radiation  field  near the boundary  where 7, A 0. 
Since  we  have  applied  the  subsequent  equation  to  strong  spectral  lines  whose  behavior at T,, 2 1 is 
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our  primary  concern, this approximation is adequate  for  the  calculations  we  have  performed. 
Combining  Equations B-2, B-4, and B-5, we  obtain 

with dr, = 3-'l2 x;dTO, Equation B-6 becomes 

which is the  equation  that we solve.  The  form of the  source  function S, is given  in  Chapter 111 by 
combining  the  general  source  function  for  the  line  and  continuum of Equation 8 with detailed  ex- 
pressions  for  the  individual  line  and  continuum  source  functions of Equations 100 and 101, respec- 
tively.  For  reference, we write 

Sc = SI (1 + A e  - c r o )  (101),  (B-10) 

where r, = drc/dT& and  we  assume  that only a single  line is important at frequency u .  If we  define 
6, = (1 + r , ) -  ', as in  Equation  104,  and  replace all frequency  points by quadrature  points "i", 

we  obtain 

for   an n -,point quadrature. In Chapter 111, we  gave  physical  arguments  for  dropping  the  last  term 
8 r s, Ae-cTo. This  gives  the  equation  we  solve: 

(log),  (B-12) 
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To  solve  Equation B-12, a second-order  linear  differential  equation,  we  obtain  the  general 
solution  to  the  homogeneous  equation  and  add a particular  solution  to  the  complete  inhomogeneous 
equation,  thus  giving  the  general  solution  to  the  inhomogeneous  equation. We then apply the bound- 
a ry  conditions of our  problem  to  obtain  the  solution  used  for  our  calculations.  The  homogeneous 
equation  corresponding  to  Equation B-12 is 

If we assume a solution of the  form 

where 

and 

B i j  F i  ( - L j )  ( 1 - 7 ::)-l 9 

(B-13) 

(B-14) 

(B-15) 

(B-16) 

and  substitute  Equation B-14 in  Equation B-13, we  obtain  the  following  equation  for  the k ' S :  

(lll),  (B-17) 

Now we  need a particular  solution  to  the  inhomogeneous equation. Assume  for  this  that 

Substituting  Equation B-18 into Equation B-12 yields  the  following two relations: 

(B-18) 

123 

X- 

I 

II E 
:.. 
. i ' l  i , 



S i  2 a j  Q j  + S i  C 

(B-20) 

The  solution  to C-19 is Pi  = 1; this is evident if we recall that 6 = (1 + r ) - l  and 

We can  obtain  an  explicit  expression  for Qi from  Equation B-20. Summing a i  Qi over "iff ,  and  noting 
that  the  summation  index is arbitrary,  we  can  write 

i: aj Q j  

Finally,  substituting  Equation B-21 in  Equation B-20, we  obtain 

(B-21) 

(112), (B-22) 

Thus,  the  general  solution  to  the  inhomogeneous  Equation C-12 is the sum of J i ,  and J i p ,  and is 
given by 

(B-23) 

The + L j  and - L j  are determined by the boundary  conditions. 

So far, we  have not introduced any restriction  on  the  extent of the  atmosphere. We do this now 
by recalling that, for all the  spectral  lines  for which we  actually  solve  Equation B-12, we showed 
that  the  chromosphere could be  treated as a "semi-infinite"  atmosphere.  The  boundary  conditions 

124 



p i for  such  an  atmosphere  can  be  stated: J~ - s, as 70-m.  Thus -Lj  = 0 in Equation B-23. The +Lj 

are then  obtained  from  the  boundary  condition at r 0  = 0. Krook (1955) has provided  the  outer bound- 
a ry  condition  we  use.  This is 

(B-24) 

Applying  condition  Equation B-24, to  the  solution,  Equation B-23, with -Lj  = 0 gives  for  the +Lj  : 

The  solution of Equation B-12 becomes 

for a semi-infinite  atmosphere,  where  everything has  now been  determined. 

NASA-Langley, 1969 - 30 
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